Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685336

RESUMO

Selenium pollution can lead to a decrease in crop yield and quality. However, the toxicological mechanisms of high Se concentrations on crops remain unclear. This study aimed to elucidate the physiological and proteomic molecular responses to Se stress in Oryza sativa. The results showed that under selenium stress, enzymatic activities of catalase, peroxidase, and superoxide dismutase in indica rice decreased by 61%, 28%, and 68%, respectively. The contents of non-enzymatic antioxidant substances ascorbic acid, glutathione, cysteine, proline, anthocyanidin, and flavonoids were decreased by 13%, 39%, 46%, 32%, 20%, and 5%, respectively, which significantly inhibited the antioxidant stress process of plants. At the same time, the results of proteomics analysis showed that rice seedlings, under Se stress, are involved in photosynthesis, photosynthesis-antenna proteins, carbon fixation, porphyrin metabolism, glyoxylate, and dicarboxylate. The differentially expressed proteins in metabolism and glutathione metabolism pathways showed a downward trend. It significantly inhibited the anti-oxidative stress, photosynthesis, and energy cycling process in plant cells, destroyed the homeostasis balance of rice plants, and inhibited the growth and development of rice. This finding reveals the molecular toxicological mechanism of Se stress on rice seedlings and provides a possible way to improve Se-resistant rice seedlings.


Assuntos
Oryza , Fotossíntese , Proteômica , Selênio , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/fisiologia , Fotossíntese/efeitos dos fármacos , Selênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Glutationa/metabolismo , Catalase/metabolismo , Poluentes do Solo/toxicidade , Peroxidase/metabolismo
2.
J Hazard Mater ; 452: 131214, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989786

RESUMO

Cadmium (Cd) can interfere with plant gene expression, change the content of metabolites and affect plant growth. In this study, untargeted metabolomics (LC-MS) and RNA-Seq sequencing were performed on root tissues of Pistia stratiotes exposed to Cd stress. The results showed that cadmium stress affected the accumulation and transport of cadmium in plants and increased the content of soluble sugar, the activities of ascorbate peroxidase (APX), and peroxidase (POD) by 34.89%, 41.45%, and 6.71% on average, and decreased the activity of superoxide dismutase (SOD) by 51.51% on average. At the same time, the contents of carotenoid, chlorophyll a, and chlorophyll b decreased by 29.52%, 20.11%, and 13.14%, respectively, Thus affecting the growth and development of plants. Metabolomic analysis showed that Cd stress affected eight metabolic pathways, involving 27 differentially expressed metabolites, mainly including unsaturated fatty acids, amino acids (phenylalanine), nucleotides, sulfur compounds, and flavonoids. By transcriptome analysis, a total of 3107 differentially expressed genes (DEGs, 2666 up-regulated genes, and 441 down-regulated genes) were identified, which were mainly involved in four pathways, among which glutathione metabolism and lignin biosynthesis were the key metabolic pathways. In conclusion, this study reveals the metabolic and transcriptional response mechanisms of P. stratiotes to Cd stress through multi-omics, providing the theoretical basis for the phytoremediation of water contaminated by Cd.


Assuntos
Araceae , Cádmio , Cádmio/toxicidade , Cádmio/metabolismo , Clorofila A , Transcriptoma , Araceae/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas , Raízes de Plantas/metabolismo
3.
Ecotoxicol Environ Saf ; 253: 114652, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822059

RESUMO

Arbuscular mycorrhizal fungi (AMF) can improve plant tolerance to heavy metal stress in terrestrial ecosystems. However, in wetland ecosystems, AMF can improve the tolerance of wetland plants to heavy metals by changing the structure and composition of rhizosphere bacterial communities, which is still rarely studied. In this study, we investigated the effects of AMF on the structure and composition of bacterial communities in the rhizosphere of plants under different chromium concentrations. The results showed that Cr(Ⅵ) concentration in Acorus calamus. rhizosphere soil decreased by 12.6 % (5.6-21.7 %) on average after AMF inoculation, At the same time, it promoted the uptake of nutrients by A. calamus and increased soil carbon input. In addition, Cr stress decreased the bacterial community diversity and abundance index by 9.8 % (1.6-18.1 %) and 24.5 % (17.3-27.6 %) on average. On the contrary, the rhizosphere soil bacterial diversity and abundance index increased by 7.3 % (2.2-19.1 %) and 13.9 % (6.0-20.9 %) on average after AMF inoculation. Moreover, compared with the non-inoculated AMF group, the bacterial community structure of A. calamus rhizosphere changed by 24.6 % under Cr stress, The common number of species increased by 6.4 %. In addition, after inoculation of AMF significantly promote the growth of a large number of bacteria related to organic degradation, plant growth, and oxidative stress, increased soil carbon input improved the soil microenvironment. Meanwhile, After AMF inoculation, the Number of edges, Number of Nodes, Average degree, and Average Path length in the symbiotic network of rhizosphere soil bacterial community increased by 34.6 %, 10 %, 44.3 %, and 26.4 %, respectively. Therefore, it offers a possibility that AMF can enhance the tolerance of wetland plants to soil Cr pollution by improving the structure and composition of bacterial communities in the rhizosphere soils of wetland plants, which provide a basis for wetland plants to repair soil Cr pollution.


Assuntos
Acorus , Micorrizas , Micorrizas/metabolismo , Ecossistema , Rizosfera , Fungos , Plantas/microbiologia , Bactérias , Solo/química , Carbono/metabolismo , Microbiologia do Solo , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA