Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(22): 5323-5335, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37386201

RESUMO

The use of oral fluid as sample matrix has gained significance in the analysis of drugs of abuse due to its non-invasive nature. In this study, the 13 opioids morphine, oxycodone, codeine, O-desmethyl tramadol, ethylmorphine, tramadol, pethidine, ketobemidone, buprenorphine, fentanyl, cyclopropylfentanyl, etonitazepyne, and methadone were extracted from oral fluid using electromembrane extraction based on conductive vials prior to analysis with ultra-high performance liquid chromatography-tandem mass spectrometry. Oral fluid was collected using Quantisal collection kits. By applying voltage, target analytes were extracted from oral fluid samples diluted with 0.1% formic acid, across a liquid membrane and into a 300 µL 0.1% (v/v) formic acid solution. The liquid membrane comprised 8 µL membrane solvent immobilized in the pores of a flat porous polypropylene membrane. The membrane solvent was a mixture of 6-methylcoumarin, thymol, and 2-nitrophenyloctyl ether. The composition of the membrane solvent was found to be the most important parameter to achieve simultaneous extraction of all target opioids, which had predicted log P values in the range from 0.7 to 5.0. The method was validated in accordance to the guidelines by the European Medical Agency with satisfactory results. Intra- and inter-day precision and bias were within guideline limits of ± 15% for 12 of 13 compounds. Extraction recoveries ranged from 39 to 104% (CV ≤ 23%). Internal standard normalized matrix effects were in the range from 88 to 103% (CV ≤ 5%). Quantitative results of authentic oral fluid samples were in accordance with a routine screening method, and external quality control samples for both hydrophilic and lipophilic compounds were within acceptable limits.


Assuntos
Analgésicos Opioides , Tramadol , Analgésicos Opioides/análise , Formiatos , Cromatografia Líquida de Alta Pressão/métodos , Solventes
2.
Drug Test Anal ; 15(8): 909-918, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37114617

RESUMO

Separation and quantification of amphetamine enantiomers are commonly used to distinguish between consumption of prescription amphetamine (mostly S-amphetamine) and illicit forms of the drug (racemate). In this study, electromembrane extraction with prototype conductive vials was combined with ultra-high performance supercritical fluid chromatography (UHPSFC-MS/MS) to quantify R- and S-amphetamine in urine. Amphetamine was extracted from 100 µL urine, diluted with 25 µL internal standard solution and 175 µL 130 mM formic acid, across a supported liquid membrane (SLM) consisting of 9 µL of a 1:1(w/w) mixture of 2-nitrophenyloctyl ether (NPOE) and bis(2-ethylhexyl)phosphite (DEHPi) into an acceptor phase containing 300 µL 130 mM formic acid. The extraction was facilitated by the application of 30 V for 15 min. Enantiomeric separation was achieved using UHPSFC-MS/MS with a chiral stationary phase. The calibration range was 50-10,000 ng/mL for each enantiomer. The between-assay CV was ≤5%, within-assay CV ≤ 1.5%, and bias within ±2%. Recoveries were 83%-90% (CV ≤ 6%), and internal standard corrected matrix effects were 99-105 (CV ≤ 2%). The matrix effects ranged from 96% to 98% (CV ≤ 8%) when not corrected by the internal standard. The EME method was compared with a chiral routine method that employed liquid-liquid extraction (LLE) for sample preparation. Assay results were in agreement with the routine method, and the mean deviation between methods was 3%, ranging from -21% to 31%. Finally, sample preparation greenness was assessed using the AGREEprep tool, which resulted in a greenness score of 0.54 for conductive vial EME, opposed to 0.47 for semi-automated 96-well LLE.


Assuntos
Anfetamina , Cromatografia com Fluido Supercrítico , Anfetamina/química , Espectrometria de Massas em Tandem/métodos , Cromatografia com Fluido Supercrítico/métodos , Formiatos , Cromatografia Líquida de Alta Pressão/métodos
3.
Anal Sci Adv ; 4(7-8): 236-243, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38716303

RESUMO

Electromembrane extraction (EME) is a microextraction technique where charged analytes are extracted from an aqueous sample solution, through a liquid membrane, and into an aqueous acceptor, under the influence of an external electric field. The liquid membrane is a few microliters of organic solvent immobilized in a polymeric support membrane. EME is a green technique and provides high selectivity. The selectivity is controlled by the direction and magnitude of the electric field, the chemical composition of the liquid membrane and the pH. Recently, commercial prototype equipment for EME was launched based on the use of conductive vials, and interest in EME is expected to increase. The current article is a tutorial and discusses the principle and practical work with EME. The practical information is related to the commercial prototype equipment but is valid also for other technical configurations of EME. The tutorial is intended to give readers a fundamental understanding of EME, which is required for method development and operation, and for avoiding common pitfalls.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34624684

RESUMO

Conductive vial electromembrane extraction (EME) with prototype equipment was applied for the first time to extract lipophilic basic drugs from serum. With this equipment, traditional platinum electrodes were replaced with sample and acceptor vials made from a conductive polymer, making the electrodes fully integrated and disposable. EME was combined with UHPLC-MS/MS, and a method to determine selected psychoactive drugs (alimemazine, amitriptyline, atomoxetine, clomipramine, doxepin, duloxetine, fluvoxamine, levomepromazine, nortriptyline and trimipramine) and metabolites (desmethyl clomipramine and desmethyl doxepin) in serum was developed, optimized, and validated. Extractions were carried out with 50 V for 15 min from serum samples (100 µL) diluted 1:3 with formic acid (0.1% v/v), using 2-nitrophenyl octyl ether as the supported liquid membrane (SLM), and formic acid (0.1% v/v, 300 µL) as acceptor phase. Using conductive vial EME, the extraction of lipophilic drugs reached exhaustive or near-exhaustive conditions, with recoveries in the range 75-117%. The method demonstrated excellent accuracy and precision, with bias within ± 6%, and intra- and inter-day CVs ranging 0.9 - 6% and 2 - 6%, respectively. In addition, acceptor phases were completely free of glycerophosphocholines. EME-UHPLC-MS/MS was successfully applied in determination of psychoactive drugs in 30 patient samples, and the results were in agreement with the current hospital routine method at St. Olav University Hospital (Trondheim, Norway). Obtaining comparable results to well-established routine methods is highly important for future implementation of EME into routine laboratories. These results thus serve as motivation for further advancing the EME technology. Until now, EME has been carried out with laboratory-build equipment, and the introduction of commercially available standardized equipment is expected to have a positive impact on future research activity.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Técnicas Eletroquímicas/métodos , Psicotrópicos/sangue , Espectrometria de Massas em Tandem/métodos , Humanos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA