Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893843

RESUMO

This paper explores the new potential strategy of using fine recycled aggregates (fRA) derived from waste 3D printed concrete (3DPC) as a substitute for cement in additive manufacturing. This study hypothesizes that fRA can optimize mixture design, reduce cement content, and contribute to sustainable construction practices. Experimental programs were conducted to evaluate the fresh and hardened properties, printability window, and buildability of 3DPC mixes containing fRA. Mixes with replacement rates of cement with fRA by 10 vol%, 20 vol%, 30 vol%, 40 vol%, and 50 vol% were produced. A comprehensive experimental protocol consisting of rheological studies (static and dynamic yield stress), dynamic elastic modulus determination (first 24 h of hydration), flexural and compressive strengths (2 d and 28 d), and an open porosity test was performed. The obtained results were verified by printing tests. In addition, an economic and environmental life cycle assessment (LCA) of the mixes was performed. The results indicate that up to 50 vol% cement replacement with fRA is feasible, albeit with some technical drawbacks. While fRA incorporation enhances sustainability by reducing CO2 emissions and material costs, it adversely affects the printability window, green strength, setting time, and mechanical properties, particularly in the initial curing stages. Therefore, with higher replacement rates (above 20 vol%), potential optimization efforts are needed to mitigate drawbacks such as reduced green strength and buildability. Notably, replacement rates of up to 20 vol% can be successfully used without compromising the overall material properties or altering the mixture design. The LCA analysis shows that reducing the cement content and increasing the fRA addition results in a significant reduction in mix cost (up to 24%) and a substantial decrease in equivalent CO2 emissions (up to 48%). In conclusion, this study underscores the potential of fRA as a sustainable alternative to cement in 3D printed concrete.

2.
Materials (Basel) ; 14(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34947238

RESUMO

Few studies have focused on determining the Young's modulus of 3D printed structures. This study presents the results of experimental investigations of Young's modulus of a 3D printed mortar. Specimens were prepared in four different ways to investigate possible application of different methods for 3D printed structures. Study determines the influence of the number of layers on mechanical properties of printed samples. Results have shown a strong statistical correlation between the number of layers and value of Young's modulus. The compressive strength and Young's modulus reduction compared to standard cylindrical sample were up to 43.1% and 19.8%, respectively. Results of the study shed light on the differences between the current standard specimen used for determination of Young's modulus and the specimen prepared by 3D printing. The community should discuss the problem of standardization of test methods in view of visible differences between different types of specimens.

3.
Materials (Basel) ; 14(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068444

RESUMO

Foundation piles that are made by concrete 3D printers constitute a new alternative way of founding buildings constructed using incremental technology. We are currently observing very rapid development of incremental technology for the construction industry. The systems that are used for 3D printing with the application of construction materials make it possible to form permanent formwork for strip foundations, construct load-bearing walls and partition walls, and prefabricate elements, such as stairs, lintels, and ceilings. 3D printing systems do not offer soil reinforcement by making piles. The paper presents the possibility of making concrete foundation piles in laboratory conditions using a concrete 3D printer. The paper shows the tools and procedure for pile pumping. An experiment for measuring pile bearing capacity is described and an example of a pile deployment model under a foundation is described. The results of the tests and analytical calculations have shown that the displacement piles demonstrate less settlement when compared to the analysed shallow foundation. The authors indicate that it is possible to replace the shallow foundation with a series of piles combined with a printed wall without locally widening it. This type of foundation can be used for the foundation of low-rise buildings, such as detached houses. Estimated calculations have shown that the possibility of making foundation piles by a 3D printer will reduce the cost of making foundations by shortening the time of execution of works and reducing the consumption of construction materials.

4.
Materials (Basel) ; 15(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009250

RESUMO

This study determines the effect of spent garnet as a replacement for natural sand in 3D-printed mortar at early ages. Five mixes with different spent garnet amounts were prepared (0%, 25%, 50%, 75% and 100% by volume). The ratio of binder to aggregate remained unchanged. In all mixes the water/binder ratio was assumed as a constant value of 0.375. Tests were performed to confirm the printability of the mix (a path quality test using a gantry robot with an extruder). Determinations of key buildability properties of the mix (green strength and Young's Modulus) during uniaxial compressive strength at 15 min, 30 min and 45 min after adding water were conducted. A hydraulic press and the GOM ARAMIS precision image analysis system were used to conduct the study. The results showed that an increase in spent garnet content caused a decrease in green strength and Young's Modulus (up to 69.91% and 80.37%, respectively). It was found that to maintain proper buildability, the recommended maximum replacement rate of natural sand with garnet is 50%. This research contributes new knowledge in terms of using recycled waste in the 3D printing technology of cementitious materials.

5.
Materials (Basel) ; 13(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290384

RESUMO

Developments in the automation of construction processes, observable in recent years, is focused on speeding up the construction of buildings and structures. Additive manufacturing using concrete mixes are among the most promising technologies in this respect. 3D concrete printing allows the building up of structure by extruding a mix layer by layer. However, the mix initially has low capacity to transfer loads, which can be particularly troublesome in cases of external components that need to be placed on top such as precast lintels or floor beams. This article describes the application of additive manufacturing technology in the fabrication of a building wall model, in which the door opening was finished with automatic lintel installation. The research adjusts the wall design and printing process, accounting for the rheological and mechanical properties of the fresh concrete, as well as design requirements of Eurocode. The article demonstrates that the process can be planned precisely and how the growth of stress in fresh concrete can be simulated, against the strength level developed. The conclusions drawn from this research will be of use in designing larger civil structures. Furthermore, the adverse effects of concrete shrinkage on structures is also presented, together with appropriate methods of control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA