RESUMO
In patients with musculoskeletal injury, changes have been observed within the central nervous system that contribute to altered movement planning. This maladaptive neuroplasticity potentially explains the clinical disconnect where residual neuromuscular dysfunction and high rates of reinjury that are often observed even after individuals clear return-to-activity functional testing. An improved understanding of these neural changes could therefore serve as a guide for facilitating a more complete recovery and minimizing risk of re-injury. Therefore, we propose a paradigm of neural-targeted rehabilitation to augment commonly used therapeutic techniques targeting sensorimotor function in order to better address maladaptive plasticity. While most treatments have the capability to modify neural function, optimizing these treatments and combining them with integrative therapies (e.g. implementation of motor learning strategies, transcranial direct current stimulation) may enhance neural efficiency and facilitate return-to activity in patients with musculoskeletal injury. To complete this model, consideration of affective aspects of movement and associated interventions must also be considered to improve the durability of these changes.
RESUMO
Increasing prevalence of native lowlanders sojourning to high altitudes (>2,500 m) for recreational, occupational, military, and competitive reasons has generated increased interest in physiological responses to multistressor environments. Exposure to hypoxia poses recognized physiological challenges that are amplified during exercise and further complicated by environments that might include combinations of heat, cold, and high altitude. There is a sparsity of data examining integrated responses in varied combinations of environmental conditions, with even less known about potential sex differences. How this translates into performance, occupational, and health outcomes requires further investigation. Acute hypoxic exposure decreases arterial oxygen saturation, resulting in a reflex hypoxic ventilatory response and sympathoexcitation causing an increase in heart rate, myocardial contractility, and arterial blood pressure, to compensate for the decreased arterial oxygen saturation. Acute altitude exposure impairs exercise performance, for example, reduced time to exhaustion and slower time trials, largely owing to impairments in pulmonary gas exchange and peripheral delivery resulting in reduced VÌo2max. This exacerbates with increasing altitude, as does the risk of developing acute mountain sickness and more serious altitude-related illnesses, but modulation of those risks with additional stressors is unclear. This review aims to summarize and evaluate current literature regarding cardiovascular, autonomic, and thermoregulatory responses to acute hypoxia, and how these may be affected by simultaneous thermal environmental challenges. There is minimal available information regarding sex as a biological variable in integrative responses to hypoxia or multistressor environments; we highlight these areas as current knowledge gaps and the need for future research.
Assuntos
Doença da Altitude , Caracteres Sexuais , Humanos , Masculino , Feminino , Hipóxia , Altitude , Pulmão , OxigênioRESUMO
OBJECTIVES: Complex walking in older adults can be improved with task practice and might be further enhanced by pairing transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex. We tested the hypothesis that a single session of practice of a complex obstacle negotiation task paired with active tDCS in older adults would produce greater within-session improvements in walking performance and retention of gains, compared to sham tDCS and no tDCS conditions. MATERIALS AND METHODS: A total of 50 older adults (mean age = 74.46 years ± 6.49) with self-reported walking difficulty were randomized to receive either active tDCS (active-tDCS group) or sham tDCS (sham-tDCS group) bilaterally to the dorsolateral prefrontal cortex or no tDCS (no-tDCS group). Each group performed ten practice trials of an obstacle negotiation task at their fastest safe speed. Retention of gains in walking performance was assessed with three trials conducted one week later. Within-session effects of practice and between-session retention effects on obstacle negotiation speed were examined. RESULTS: At the practice session, all three groups exhibited significant within-session gains in walking speed (p ≤ 0.005). However, the gains were significantly greater in the sham-tDCS group than in the active-tDCS and no-tDCS groups (p ≤ 0.03) and were comparable between the active-tDCS and no-tDCS groups (p = 0.89). At one-week follow-up, the active-tDCS group exhibited significant between-session retention of gains and continued "offline" improvement in walking speed (p = 0.005). The active-tDCS group showed significantly greater retention of gains than the no-tDCS (p = 0.02) but not the sham-tDCS group (p = 0.24). CONCLUSIONS: Pairing prefrontal active tDCS with a single session of obstacle negotiation practice may enhance one-week retention of gains in walking performance compared to no tDCS. However, the evidence is insufficient to suggest a benefit of active tDCS over sham tDCS for enhancing the gains in walking performance. Additional studies with a multisession intervention design and larger sample size are needed to further investigate these findings. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT03122236.
Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Negociação , Caminhada , Córtex Pré-Frontal/fisiologia , Método Duplo-CegoRESUMO
BACKGROUND: Over-activation of prefrontal cortex during walking has been reported in older adults versus young adults. Heighted activity in prefrontal cortex suggests a shift toward an executive control strategy to control walking. A potential contributing factor is degraded functioning of pattern-generating locomotor circuits in the central nervous system that are important to walking coordination. Somatosensory information is a crucial input to these circuits, so age-related impairment of somatosensation would be expected to compromise the neural control of walking. The present study tested the hypothesis that poorer somatosensation in the feet of older adults will be associated with greater recruitment of the prefrontal cortex during walking. This study also examines the extent to which somatosensory function and prefrontal activity are associated with performance on walking and balance assessments. METHODS: Forty seven older adults (age 74.6 ± 6.8 years; 32 female) participated in walking assessments (typical walking and obstacle negotiation) and Berg Balance Test. During walking, prefrontal activity was measured with functional near infrared spectroscopy (fNIRS). Participants also underwent somatosensory testing with Semmes-Weinstein monofilaments. RESULTS: The primary findings is that worse somatosensory monofilament level was associated with greater prefrontal cortical activity during typical walking (r = 0.38, p = 0.008) and obstacle negotiation (r = 0.40, p = 0.006). For the obstacle negotiation task, greater prefrontal activity was associated with faster walking speed (p = 0.004). Poorer somatosensation was associated with slower typical walking speed (p = 0.07) and obstacles walking speed (p < 0.001), as well as poorer balance scores (p = 0.03). CONCLUSIONS: The study findings are consistent with a compensation strategy of recruiting prefrontal/executive control resources to overcome loss of somatosensory input to the central nervous system. Future research should further establish the mechanisms by which somatosensory impairments are linked to the neural control and performance of walking tasks, as well as develop intervention approaches.
Assuntos
Marcha , Espectroscopia de Luz Próxima ao Infravermelho , Idoso , Idoso de 80 Anos ou mais , Função Executiva/fisiologia , Feminino , Marcha/fisiologia , Humanos , Córtex Pré-Frontal/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Caminhada/fisiologiaRESUMO
This investigation aimed to identify parameters of reduced functionality that are responsible for variations in the normal gait cycle. Sixteen older adults (55-85 years; nine males) and eighteen young adults (18-40 years; eight males) were enrolled. Assessments included walking trials, questionnaires, and assessed maximal and submaximal dorsiflexors (DF) and plantar flexors (PF) force. Multiple relationships were found between the muscular capabilities of the ankle and gait variability in older adults. For both the DF and PF muscles, the older adults produced significantly lower maximal force production and higher levels of force variability than younger adults; physical activity (PA) level was also significantly correlated. The reduction in muscular strength was concurrent with increased force variability and deficits in spatiotemporal gait parameters, suggesting an age-related worsening of the central motor control. Our results found that PA engagement could preserve gait quality and independence. These are essential considerations for further research on the cause and reduction of falls in older adults.
RESUMO
INTRODUCTION: Gait termination (GT) is a challenging transitory task involving converting from a dynamic state of motion to a static state. These transitional locomotor tasks are particularly troublesome for populations with postural deficits, i.e., Parkinson's disease (PD) and Essential Tremor (ET). They demand greater postural control and intricate integration of the neuromuscular system. The mechanisms involved in GT in these populations have not been well studied despite the safety concerns and potential risk for falls. The purpose of this investigation was to examine the different control strategies utilized during GT between individuals with ET and PD. METHODS: Twenty-four individuals with ET (66 ± 8 yrs), twenty-four individuals with PD (64 ± 8 yrs), and twenty healthy older adults (HOA: 63 ± 9 yrs) participated in this study. Average self-selected gait velocity for each group was collected during the GT trial walking portion. Ground reaction force (GRF) data were used to calculate braking and propulsive forces from the last two steps during GT. GRF data measured the dynamic postural stability index (DPSI), defined as an individual's ability to maintain balance while transitioning from a dynamic to a stable state. RESULTS: Persons with ET had a significantly slower approach velocity (0.63 m/s) when compared to HOA (0.92 m/s) and PD (0.77 m/s). Persons with PD had significantly slower approach velocity when compared to HOA. Examination of GRF data found that those with ET generated significantly smaller propulsive and braking forces (p < .05). Forces increased in those with PD and then even more in the HOA group. Postural stability analysis revealed that ET had significantly worse stability scores than PD and HOA (p < .05). CONCLUSION: Individuals with PD and ET utilize different control strategies for planned GT, which suggests both the cerebellum and the basal ganglia play central yet potentially different roles in anticipatory control during self-directed activities.
Assuntos
Tremor Essencial , Doença de Parkinson , Idoso , Marcha , Humanos , Doença de Parkinson/complicações , Equilíbrio Postural , CaminhadaRESUMO
We sought to determine how people with Parkinson disease (PD) perform the sit to stand task (STS). After measuring kinetic and kinematic data our results suggest that people with PD perform the STS task by redistributing their joint torques but is accompanied with postural instability.
Assuntos
Extremidade Inferior/fisiopatologia , Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Postura Sentada , Posição Ortostática , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , TorqueRESUMO
OBJECTIVE: To assess changes in walking function and walking-related prefrontal cortical activity following two post-stroke rehabilitation interventions: an accurate adaptability (ACC) walking intervention and a steady state (SS) walking intervention. DESIGN: Randomized, single blind, parallel group clinical trial. SETTING: Hospital research setting. SUBJECTS: Adults with chronic post-stroke hemiparesis and walking deficits. INTERVENTIONS: ACC emphasized stepping accuracy and walking adaptability, while SS emphasized steady state, symmetrical stepping. Both included 36 sessions led by a licensed physical therapist. ACC walking tasks recruit cortical regions that increase corticospinal tract activation, while SS walking activates the corticospinal tract less intensely. MAIN MEASURES: The primary functional outcome measure was preferred steady state walking speed. Prefrontal brain activity during walking was measured with functional near infrared spectroscopy to assess executive control demands. Assessments were conducted at baseline, post-intervention (three months), and follow-up (six months). RESULTS: Thirty-eight participants were randomized to the study interventions (mean age 59.6 ± 9.1 years; mean months post-stroke 18.0 ± 10.5). Preferred walking speed increased from baseline to post-intervention by 0.13 ± 0.11 m/s in the ACC group and by 0.14 ± 0.13 m/s in the SS group. The Time × Group interaction was not statistically significant (P = 0.86). Prefrontal fNIRS during walking decreased from baseline to post-intervention, with a marginally larger effect in the ACC group (P = 0.05). CONCLUSIONS: The ACC and SS interventions produced similar changes in walking function. fNIRS suggested a potential benefit of ACC training for reducing demand on prefrontal (executive) resources during walking.
Assuntos
Terapia por Exercício/métodos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/complicações , Caminhada/fisiologia , Adulto , Idoso , Função Executiva , Humanos , Masculino , Pessoa de Meia-Idade , Paresia , Método Simples-CegoRESUMO
OBJECTIVES: This pilot study assessed whether frontal lobe transcranial direct current stimulation (tDCS) combined with complex walking rehabilitation is feasible, safe, and shows preliminary efficacy for improving walking and executive function. MATERIALS AND METHODS: Participants were randomized to one of the following 18-session interventions: active tDCS and rehabilitation with complex walking tasks (Active/Complex); sham tDCS and rehabilitation with complex walking tasks (Sham/Complex); or sham tDCS and rehabilitation with typical walking (Sham/Typical). Active tDCS was delivered over F3 (cathode) and F4 (anode) scalp locations for 20 min at 2 mA intensity. Outcome measures included tests of walking function, executive function, and prefrontal activity measured by functional near infrared spectroscopy. RESULTS: Ninety percent of participants completed the intervention protocol successfully. tDCS side effects of tingling or burning sensations were low (average rating less than two out of 10). All groups demonstrated gains in walking performance based on within-group effect sizes (d ≥ 0.50) for one or more assessments. The Sham/Typical group showed the greatest gains for walking based on between-group effect sizes. For executive function, the Active/Complex group showed the greatest gains based on moderate to large between-group effect sizes (d = 0.52-1.11). Functional near-infrared spectroscopy (fNIRS) findings suggest improved prefrontal cortical activity during walking. CONCLUSIONS: Eighteen sessions of walking rehabilitation combined with tDCS is a feasible and safe intervention for older adults. Preliminary effects size data indicate a potential improvement in executive function by adding frontal tDCS to walking rehabilitation. This study justifies future larger clinical trials to better understand the benefits of combining tDCS with walking rehabilitation.
Assuntos
Estimulação Transcraniana por Corrente Contínua , Idoso , Método Duplo-Cego , Função Executiva , Humanos , Projetos Piloto , Córtex Pré-Frontal , CaminhadaRESUMO
BACKGROUND AND OBJECTIVES: The influence of interindividual differences on brain activation during obstacle negotiation and the implications for walking performance are poorly understood in older adults. This study investigated the extent to which prefrontal recruitment during obstacle negotiation is explained by differences in age, executive function, and sex. These data were interpreted according to the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) framework of brain aging. We also tested the association between prefrontal recruitment and walking performance. RESEARCH DESIGN AND METHODS: Prefrontal oxygenated hemoglobin concentration (O2Hb) was measured during typical walking (Typical) and obstacle negotiation (Obstacles) tasks in 50 adults aged 65 years and older using functional near-infrared spectroscopy. The primary outcome was the change in prefrontal recruitment (∆PFR), measured as Obstacles ∆O2Hb minus Typical ∆O2Hb. Multiple regression was used to test the relationship between ∆PFR and age, executive function measured by the Trail Making Test, and sex. Pearson's correlation coefficient was used to investigate the association between ∆PFR and the cost of Obstacles walking speed relative to Typical walking. RESULTS: Age, executive function, and their interaction significantly predicted greater ∆PFR (R 2 = 0.34, p = .01). Participants were subgrouped according to age and executive function to examine the interaction effects. Adults of lower age and with lower executive function exhibited greater ∆PFR during Obstacles compared to their peers with higher executive function (p = .03). Adults of advanced age exhibited a ceiling of prefrontal recruitment during obstacle negotiation, regardless of executive function level (p = .87). Greater ∆PFR was significantly associated with a smaller cost of Obstacles (r = 0.3, p = .03). DISCUSSION AND IMPLICATIONS: These findings are consistent with the CRUNCH framework: neural inefficiency where a greater amount of brain activation is needed for task performance at a similar level, compensatory overactivation to prevent a steeper decline in task performance, and capacity limitation with a recruitment ceiling effect.
RESUMO
Background: Functional near-infrared spectroscopy (fNIRS) is a valuable neuroimaging approach for studying cortical contributions to walking function. Recruitment of prefrontal cortex during walking has been a particular area of focus in the literature. The present study investigated whether task-related change in prefrontal recruitment measured by fNIRS is affected by individual differences in people post-stroke. The primary hypotheses were that poor mobility function would contribute to prefrontal over-recruitment during typical walking, and that poor cognitive function would contribute to a ceiling in prefrontal recruitment during dual-task walking (i.e., walking with a cognitive task). Methods: Thirty-three adults with chronic post-stroke hemiparesis performed three tasks: typical walking at preferred speed (Walk), serial-7 subtraction (Serial7), and walking combined with serial-7 subtraction (Dual-Task). Prefrontal recruitment was measured with fNIRS and quantified as the change in oxygenated hemoglobin concentration (ΔO2Hb) between resting and active periods for each task. Spatiotemporal gait parameters were measured on an electronic walkway. Stepwise regression was used to assess how prefrontal recruitment was affected by individual differences including age, sex, stroke region, injured hemisphere, stroke chronicity, 10-meter walking speed, balance confidence measured by Activities-specific Balance Confidence (ABC) Scale, sensorimotor impairment measured by Fugl-Meyer Assessment, and cognitive function measured by Mini-Mental State Examination (MMSE). Results: For Walk, poor balance confidence (ABC Scale score) significantly predicted greater prefrontal recruitment (ΔO2Hb; R 2 = 0.25, p = 0.003). For Dual-Task, poor cognitive function (MMSE score) significantly predicted lower prefrontal recruitment (ΔO2Hb; R 2 = 0.25, p = 0.002). Conclusions: Poor mobility function predicted higher prefrontal recruitment during typical walking, consistent with compensatory over-recruitment. Poor cognitive function predicted lower prefrontal recruitment during dual-task walking, consistent with a recruitment ceiling effect. These findings indicate that interpretation of prefrontal recruitment should carefully consider the characteristics of the person and demands of the task.
RESUMO
BACKGROUND AND PURPOSE: Adequate lower limb strength and motor control are essential for mobility and quality of life. People with Parkinson disease (PD) experience a significant and progressive decline in motor capabilities as part of this neurodegenerative disease. The primary objective of this study was to examine the effect of PD on (1) muscular strength and (2) force steadiness in muscles that are primarily responsible for locomotion and stability. METHODS: Thirteen persons with PD and 13 healthy age-matched controls participated. Participants performed maximal and submaximal (5%, 10%, and 20% maximum voluntary contractions) isometric force tasks with the limb stabilized in a customized device. Strength of the hip extensors and flexors, hip abductors and adductors, and ankle plantar flexors and dorsiflexors was quantified based on data obtained from force transducers, with the relevant joint stabilized in standardized positions. RESULTS: Individuals with PD were weaker and exhibited higher amounts of force variability than controls across the lower extremity. Reduced strength was greatest in the hip flexors (2.0 N/kg vs 2.6 N/kg) and ankle plantar flexors (1.74 N/kg vs 2.64 N/kg) and dorsiflexors (1.9 N/kg vs 2.3 N/kg). Force steadiness was impaired in the hip flexors, ankle plantar flexors, and dorsiflexors. DISCUSSION AND CONCLUSIONS: Reduced maximal force production was concomitant with impaired force control within the muscles that are critical for effective ambulation (hip flexion, ankle dorsiflexion, and ankle plantar flexion). These features should be evaluated when considering contributors to reduced mobility and quality of life.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A241).
Assuntos
Contração Isométrica/fisiologia , Extremidade Inferior/fisiopatologia , Força Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Doença de Parkinson/fisiopatologia , Idoso , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de VidaRESUMO
BACKGROUND: Inconsistent fat-free mass (FFM) and muscle strength responses have been reported in randomized clinical trials (RCTs) administering testosterone replacement therapy (TRT) to middle-aged and older men. Our objective was to conduct a meta-analysis to determine whether TRT improves FFM and muscle strength in middle-aged and older men and whether the muscular responses vary by TRT administration route. METHODS: Systematic literature searches of MEDLINE/PubMed and the Cochrane Library were conducted from inception through 31 March 2017 to identify double-blind RCTs that compared intramuscular or transdermal TRT vs. placebo and that reported assessments of FFM or upper-extremity or lower-extremity strength. Studies were identified, and data were extracted and validated by three investigators, with disagreement resolved by consensus. Using a random effects model, individual effect sizes (ESs) were determined from 31 RCTs reporting FFM (sample size: n = 1213 TRT, n = 1168 placebo) and 17 reporting upper-extremity or lower-extremity strength (n = 2572 TRT, n = 2523 placebo). Heterogeneity was examined, and sensitivity analyses were performed. RESULTS: When administration routes were collectively assessed, TRT was associated with increases in FFM [ES = 1.20 ± 0.15 (95% CI: 0.91, 1.49)], total body strength [ES = 0.90 ± 0.12 (0.67, 1.14)], lower-extremity strength [ES = 0.77 ± 0.16 (0.45, 1.08)], and upper-extremity strength [ES = 1.13 ± 0.18 (0.78, 1.47)] (P < 0.001 for all). When administration routes were evaluated separately, the ES magnitudes were larger and the per cent changes were 3-5 times greater for intramuscular TRT than for transdermal formulations vs. respective placebos, for all outcomes evaluated. Specifically, intramuscular TRT was associated with a 5.7% increase in FFM [ES = 1.49 ± 0.18 (1.13, 1.84)] and 10-13% increases in total body strength [ES = 1.39 ± 0.12 (1.15, 1.63)], lower-extremity strength [ES = 1.39 ± 0.17 (1.07, 1.72)], and upper-extremity strength [ES = 1.37 ± 0.17 (1.03, 1.70)] (P < 0.001 for all). In comparison, transdermal TRT was associated with only a 1.7% increase in FFM [ES = 0.98 ± 0.21 (0.58, 1.39)] and only 2-5% increases in total body [ES = 0.55 ± 0.17 (0.22, 0.88)] and upper-extremity strength [ES = 0.97 ± 0.24 (0.50, 1.45)] (P < 0.001). Interestingly, transdermal TRT produced no change in lower-extremity strength vs. placebo [ES = 0.26 ± 0.23 (-0.19, 0.70), P = 0.26]. Subanalyses of RCTs limiting enrolment to men ≥60 years of age produced similar results. CONCLUSIONS: Intramuscular TRT is more effective than transdermal formulations at increasing LBM and improving muscle strength in middle-aged and older men, particularly in the lower extremities.
Assuntos
Músculo Esquelético/efeitos dos fármacos , Testosterona/farmacologia , Fatores Etários , Vias de Administração de Medicamentos , Terapia de Reposição Hormonal/efeitos adversos , Terapia de Reposição Hormonal/métodos , Humanos , Masculino , Força Muscular , Ensaios Clínicos Controlados Aleatórios como Assunto , Testosterona/uso terapêuticoRESUMO
Bradykinesia is a prominent problem for persons with Parkinson's disease (PD) and has been studied extensively with upper extremity tasks; however there is a lack of research examining bradykinesia in targeted lower extremity tasks related to mobility. Navigating steps and curbs are challenging tasks for older adults and neurologically impaired and thus utilizing these behaviors provides ecological validity to the study of bradykinesia. Herein we assess differences in step negotiation performance between individuals with PD and aged matched older adults. Three-dimensional kinematics and ground reaction forces were collected while 12 participants with PD and 12 older adults performed a single step up onto a platform. Persons with PD spent a significantly greater amount of time in the heel lift phase (P=0.0003, d=1.80). Peak vertical foot velocity of the lead foot was also significantly less in PD (P=0.02, d=1.05). Lastly, persons with PD displayed reduced sagittal hip and knee range of motion during the trail step (P=0.01, d=1.20 and P=0.02, d=1.05, respectively). Parkinson's participants exhibited slight decrement in step negotiation execution. Increased step time and decreased foot velocity and range of motion were attributes associated with Parkinson's step negotiation performance. Contrary to our hypothesis, in many comparisons, persons with PD during their best medicated state performed comparable to older adults, indicative of successful pharmacotherapy. Rehabilitation efforts can seek to improve performance in motor control tasks such as step negotiation, by restoring the relationship between perceived and actual motor output and enhancing muscle coordination and output as well as ranges of motion.
Assuntos
Hipocinesia/etiologia , Doença de Parkinson/fisiopatologia , Caminhada/fisiologia , Adulto , Idoso , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Humanos , Hipocinesia/diagnóstico , Hipocinesia/fisiopatologia , Extremidade Inferior/fisiopatologia , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Fatores de TempoRESUMO
BACKGROUND: Dystonia often has inconsistent benefits and requires more energy-demanding DBS settings. Studies suggest that squared biphasic pulses could provide significant clinical benefit; however, dystonia patients have not been explored. OBJECTIVES: To assess safety and tolerability of square biphasic DBS in dystonia patients. METHODS: This study included primary generalized or cervical dystonia patients with bilateral GPi DBS. Square biphasic pulses were implemented and patients were assessed at baseline, immediately postwashout, post-30-minute washout, 1 hour post- and 2 hours postinitiation of investigational settings. RESULTS: Ten participants completed the study. There were no patient-reported or clinician-observed side effects. There was improvement across time on the Toronto Western Spasmodic Torticollis Rating Scale (χ2 = 10.7; P = 0.031). Similar improvement was detected in objective gait measurements. CONCLUSIONS: Square biphasic stimulation appears safe and feasible in dystonia patients with GPi DBS. Further studies are needed to evaluate possible effectiveness particularly in cervical and gait features. © 2016 International Parkinson and Movement Disorder Society.
Assuntos
Estimulação Encefálica Profunda/métodos , Distonia/terapia , Globo Pálido/fisiologia , Adulto , Idoso , Biofísica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Projetos Piloto , Índice de Gravidade de Doença , Adulto JovemRESUMO
OBJECTIVES: Evidence suggests that nonconventional programming may improve deep brain stimulation (DBS) therapy for movement disorders. The primary objective was to assess feasibility of testing the tolerability of several nonconventional settings in Parkinson's disease (PD) and essential tremor (ET) subjects in a single office visit. Secondary objectives were to explore for potential efficacy signals and to assess the energy demand on the implantable pulse-generators (IPGs). MATERIALS AND METHODS: A custom firmware (FW) application was developed and acutely uploaded to the IPGs of eight PD and three ET subjects, allowing delivery of several nonconventional DBS settings, including narrow pulse widths, square biphasic pulses, and irregular pulse patterns. Standard clinical rating scales and several objective measures were used to compare motor outcomes with sham, clinically-optimal and nonconventional settings. Blinded and randomized testing was conducted in a traditional office setting. RESULTS: Overall, the nonconventional settings were well tolerated. Under these conditions it was also possible to detect clinically-relevant differences in DBS responses using clinical rating scales but not objective measures. Compared to the clinically-optimal settings, some nonconventional settings appeared to offer similar benefit (e.g., narrow pulse widths) and others lesser benefit. Moreover, the results suggest that square biphasic pulses may deliver greater benefit. No unexpected IPG efficiency disadvantages were associated with delivering nonconventional settings. CONCLUSIONS: It is feasible to acutely screen nonconventional DBS settings using controlled study designs in traditional office settings. Simple IPG FW upgrades may provide more DBS programming options for optimizing therapy. Potential advantages of narrow and biphasic pulses deserve follow up.
Assuntos
Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Doença de Parkinson/terapia , Idoso , Fenômenos Biofísicos , Estudos de Coortes , Metabolismo Energético/fisiologia , Globo Pálido/fisiologia , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Estatísticas não Paramétricas , Resultado do TratamentoRESUMO
INTRODUCTION: Progressive supranuclear palsy (PSP) is the most common form of atypical Parkinsonism; however it is underdiagnosed and often misdiagnosed as Parkinson's disease (PD). METHODS: We investigated gait initiation (GI) and gait performance in a total of 36 participants (12 PSP, 12 PD and 12 healthy age- and gender-matched controls) to gain further insight into specific motor deficits that characterize dynamic postural control and gait in PSP. Anticipatory postural adjustments (APAs), quantified by center of pressure (COP) displacement and speed prior to an initial heel off, and the maximum distance (COPCOM) between COP and center of mass (COM) during all three GI phases were calculated to evaluate dynamic postural control. Steady-state gait performance was also evaluated and compared across the groups. RESULTS: APAs in PSP were significantly altered such that the posterior COP shift is profoundly diminished when compared to PD (p < 0.05). Moreover, proper velocity control during GI in PSP was affected, particularly in the mediolateral direction, when compared to PD (p < 0.05). The diminished COPCOM distance is further indicative of more severe dynamic postural instability in PSP than in PD (p < 0.05). Significant differences in spatiotemporal parameters, inter-step variability, and asymmetry during gait in PSP, in comparison with PD were also identified (all p's < 0.05). CONCLUSION: The present study reveals that the compensatory GI strategy in PSP is distinct from PD and paradoxically induces lateral instability. Further, gait performance in PSP is slower and more variable which could be the consequence of lateral instability and fear of falling.
Assuntos
Transtornos Neurológicos da Marcha/fisiopatologia , Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Paralisia Supranuclear Progressiva/fisiopatologia , Idoso , Feminino , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Paralisia Supranuclear Progressiva/complicaçõesRESUMO
INTRODUCTION: Muscular weakness and the motor difficulties associated with Parkinson disease (PD) often impair the performance of activities of daily living (ADL). However, little is known about the magnitude and distribution of relative muscular effort of persons with PD during ADL. The purpose of this investigation was to determine the relative magnitude of lower extremity moment production that persons with PD use to perform common ADL. METHODS: Fifteen participants with mild-to-moderate PD and 14 age/sex-matched controls volunteered. Participants performed a series of ADL tasks, as follows: gait initiation (GI), gait, and stair ascending tasks. Participants were then asked to perform maximal-effort isokinetic tests of hip and knee extension and ankle plantarflexion at speeds of 90° per second and 120° per second. Relative effort was quantified as a percentage of the maximal isokinetic value produced by a joint during performance of the ADL. Relative effort and peak isokinetic joint moments were analyzed using a mixed-model ANOVA with repeated measures. All other comparisons were evaluated using independent t-tests. RESULTS: Persons with PD produced smaller ankle plantarflexion moment at both 90° per second and 120° per second (P < 0.05). Relative effort during GI (271% vs 189%, P < 0.05) and gait (270% vs 161%, P < 0.05) was significantly greater at the ankle in persons with PD. Contribution of the ankle to the support moment was lower in PD during stair ascending (24% vs 34%) and GI (63% vs 57%) compared with that in controls. CONCLUSIONS: The reduced ankle moments during ADL are indicative of deficits in muscular capabilities in those with PD. Moreover, PD caused a redistribution of joint torques, such that PD participants used their hip extensors more and ankle plantarflexors less.
Assuntos
Atividades Cotidianas , Extremidade Inferior/fisiologia , Doença de Parkinson/fisiopatologia , Idoso , Tornozelo/fisiologia , Feminino , Marcha/fisiologia , Quadril/fisiologia , Humanos , Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , TorqueRESUMO
BACKGROUND AND PURPOSE: Gait dysfunction is a common target for pharmacological, behavioral, and surgical interventions in persons with Parkinson disease. However, the responsiveness of gait speed, that is, clinically important difference, is not well described in the literature for this population. The purpose of this study was to determine the magnitude of meaningful difference in gait speed using multiple methods of assessment and utilizing a large sample of participants inclusive of various stages of disease severity. METHODS: Gait speed was measured using an instrumented walkway in 324 ambulatory persons with idiopathic Parkinson disease. Cross-sectional analysis of the clinically important difference for gait speed was performed using distribution- and anchor-based approaches: disability (Schwab and England Activities of Daily Living Scale), disease stage (Modified Hoehn and Yahr Scale), and severity (Unified Parkinson's Disease Rating Scale). RESULTS: Using distribution-based analyses and effect size metrics, the small important difference in gait speed was 0.06 m/s, moderate was 0.14 m/s, and large was 0.22 m/s. Applying previously established cut-points for small, moderate, and large change in the motor scale score, the associated changes in gait speed that might be expected are 0.02, 0.06, and 0.10 m/s. DISCUSSION AND CONCLUSIONS: Our data revealed that the clinically important difference in gait speed among persons with Parkinson disease on medication ranged from 0.05 m/s to 0.22 m/s by distribution-based analysis and ranged from 0.02 m/s to 0.18 m/s per level within the anchor-based metrics. These data will aid in evaluating the effectiveness of interventions to improve gait speed in persons with Parkinson disease.Video Abstract available. See video (Supplemental Digital Content 1, http://links.lww.com/JNPT/A77) for more insights from the authors.
Assuntos
Atividades Cotidianas , Avaliação da Deficiência , Doença de Parkinson/reabilitação , Caminhada/fisiologia , Idoso , Estudos Transversais , Feminino , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Resultado do TratamentoRESUMO
Parkinson disease is a progressive neurodegenerative disorder characterized by a variety of motor and nonmotor features. This article reviews the problems of postural instability and gait disturbance in persons with Parkinson disease through the discussion of (1) the neuropathology of parkinsonian motor deficits, (2) behavioral manifestations of gait and postural abnormalities observed in persons with Parkinson disease, and (3) pharmacologic, surgical, and physical therapy-based interventions to combat postural instability and gait disturbance. This article advances the treatment of postural instability and gait disturbance by condensing up-to-date knowledge and making it available to clinicians and rehabilitation professionals.