Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Mol Biosci ; 10: 1101953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950523

RESUMO

Background: Natural non-coding antisense transcripts (ncNATs) are long non-coding RNAs (lncRNA) transcribed from the opposite strand of a separate protein coding or non-coding gene. As such, ncNATs can increase overlapping mRNA (and the coded protein) levels by stabilizing mRNA, absorbing inhibitory miRNAs and protecting the mRNA from degradation, or conversely decrease mRNA (or protein) levels by directing the mRNA towards degradation or inhibiting protein translation. Recently, growing numbers of ncNATs were shown to be dysregulated in cancerous cells, however, actual impact of ncNATs on cancer progression remains largely unknown. We therefore investigated gene expression levels of natural antisense lncRNA CHROMR (Cholesterol Induced Regulator of Metabolism RNA) and its sense protein coding gene PRKRA (Protein Activator of Interferon Induced Protein Kinase EIF2AK2) in gliomas. Next, we checked CHROMR effect on the survival of glioma patients. Methods: We performed RNA-seq on post-surgical tumor samples from 26 glioma patients, and normal brain tissue. Gene expression in TPM values were extracted for CHROMR and PRKRA genes. These data were validated using the TCGA and GTEx gene expression databases. Results: The gene expression level of ncNAT lncRNA CHROMR in glioma tissue was significantly higher compared to healthy brain tissue, while the expression of its sense counterpart protein coding PRKRA mRNA did not differ between glioma and healthy samples. Survival analysis showed lower survival rates in patients with low mRNA PRKRA/lncRNA CHROMR gene expression ratio compared to high ratio showing a link between lncRNA CHROMR and glioma patient survival prognosis. Conclusion: Here we show that elevated levels of lncRNA CHROMR (i.e., low ratio of mRNA PRKRA/lncRNA CHROMR) is associated with poor prognosis for glioma patients.

2.
Sci Rep ; 12(1): 5431, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361860

RESUMO

The interest in chemical RNA modifications is rapidly growing in the field of molecular biology. Dynamic and reversible alterations of N6-methyladenosine (m6A) RNA modification are responsible for a platter of structural and functional changes in healthy and cancerous cell states. Although many studies reported the link between tumor initiation/progression and m6A modulators, there are few studies exploring transcriptome-wide m6A profile of non-coding RNAs. The aim of current study was to identify glioma stem cell (GSC) specific m6A landscape of long non-coding RNAs (lncRNAs) applying MeRIP-seq approach. MeRIP-seq analysis assigned 77.9% of m6A peaks to mRNAs and 8.16% to lncRNAs. GSCs and differentiated cells showed 76.4% conservation of m6A peaks, while 19.4% were unique to GSCs. Seven novel GSC-specific m6A modified lncRNAs were identified: HRAT92, SLCO4A1-AS1, CEROX1, PVT1, AGAP2-AS1, MIAT, and novel lncRNA gene ENSG00000262223. Analysis disclosed a strong negative correlation between lncRNAs m6A modification rate and expression. MeRIP-seq analysis revealed m6A modifications on previously reported glioma-associated lncRNAs: LINC000461, HOTTIP, CRNDE, TUG1, and XIST. Moreover, current study disclosed that most highly m6A modified lncRNAs primarily contain m6A modifications close to 3' and 5' ends. Our results provide basis and insight for further studies of m6A modifications in non-coding transcriptome of GSCs.


Assuntos
Glioma , RNA Longo não Codificante , Perfilação da Expressão Gênica , Glioma/genética , Humanos , Células-Tronco Neoplásicas , RNA Longo não Codificante/genética , Transcriptoma
3.
Comput Methods Programs Biomed ; 211: 106416, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563894

RESUMO

BACKGROUND AND OBJECTIVE: Gliomas are the most common brain tumors usually classified as benign low-grade or aggressive high-grade glioma. One of the promising possibilities of glioma diagnostics and tumor type identification could be based on concentration measurements of glioma secreted proteins in blood. However, several published approaches of quantitative proteomic analysis emphasize limits of one single protein to be used as biomarker of these types of tumors. Simultaneous multi-protein concentrations analysis giving antibody array-based methods suffer from poor measurement accuracy due to technical limitations of imaging systems. METHODS: We applied Principal Component Analysis (PCA) for series of repeated antibody array chemiluminescence images to extract the component representing relative values of protein concentrations, free from zero-mean noise and uneven background illumination - main factors corrupting evaluation result. RESULTS: The proposed method increased accuracy of protein concentration estimates at least 2-fold. Decision tree classifier applied to the relative concentration values of three proteins TIMP-1, PAI-1 and NCAM-1 estimated by proposed image analysis method effectively distinguished between low-grade glioma, high-grade glioma and healthy control subjects showing validation accuracy of 74.9% with the highest positive predictive value of 81.2% for high grade glioma and 57.1% for low grade glioma cases. CONCLUSIONS: PCA-based image processing could be applied in protein antibody microarray and other multitarget detection/evaluation investigations to increase estimation accuracy.


Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Sanguíneas , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Humanos , Luminescência , Imageamento por Ressonância Magnética , Proteômica
4.
Sci Rep ; 11(1): 13100, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162919

RESUMO

Astrocytoma is the most common glial tumour of the CNS. The most malignant form is grade IV Astrocytoma, also called Glioblastoma. Due to its heterogeneity, aggressiveness and lethal nature scientists are trying to find less invasive methods for early prediction of tumour onset, recurrence, response to therapy and patients' survival. Here, applying decision tree classification algorithm we performed astrocytoma specific protein profile analysis on serum proteins TIMP-1, active and latent form of TGF-ß1, IP-10, ANGPT-1, OPN, and YKL-40 using enzyme-linked immunosorbent detection assay (ELISA). Results have demonstrated that astrocytoma specific profile consisted of three proteins-active form of TGF-ß1, TIMP-1 and YKL-40 and was able to correctly classify 78.0% (103/132) of sample and 83.3% (60/72) of astrocytoma sample. Calculating decision tree algorithm associated with astrocytoma patient survival, prediction model reached an accuracy of 83.3% (60/72). All together these results indicate that glioma detection and prediction from patient serum using glioma associated proteins and applying mathematical classification tools could be achieved, and applying more comprehensive research further could be implemented in clinic.


Assuntos
Astrocitoma/diagnóstico , Neoplasias Encefálicas/diagnóstico , Proteína 1 Semelhante à Quitinase-3/sangue , Inibidor Tecidual de Metaloproteinase-1/sangue , Fator de Crescimento Transformador beta1/sangue , Astrocitoma/sangue , Astrocitoma/metabolismo , Astrocitoma/mortalidade , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida
5.
Brain Sci ; 10(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227903

RESUMO

Gliomas account for approximately 70% of primary brain tumors in adults. Of all gliomas, grade IV astrocytoma, also called glioblastoma, has the poorest overall survival, with <5% of patients surviving five years after diagnosis. Due to the aggressiveness, lethal nature, and impaired surgical accessibility of the tumor, early diagnosis of the tumor and, in addition, prediction of the patient's survival time are important. We hypothesize that combining the protein level values of highly recognizable glioblastoma serum biomarkers could help to achieve higher specificity and sensitivity in predicting glioma patient outcome as compared to single markers. The aim of this study was to select the most promising astrocytoma patient overall survival prediction variables from five secretory proteins-glial fibrillary acidic protein (GFAP), matrix metalloproteinase-2 (MMP-2), chitinase 3-like 1 (CHI3L1), osteopontin (OPN), and amphiregulin (AREG)-combining them with routinely used tumor markers to create a Patient Survival Score calculation tool. The study group consisted of 70 astrocytoma patients and 31 healthy controls. We demonstrated that integrating serum CHI3L1 and OPN protein level values and tumor isocitrate dehydrogenase 1 IDH1 mutational status into one parameter could predict low-grade astrocytoma patients' two-year survival with 93.8% accuracy.

6.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120918

RESUMO

Recently long non-coding RNAs (lncRNAs) were highlighted for their regulatory role in tumor biology. The novel human lncRNA cancer susceptibility candidate 2 (CASC2) has been characterized as a potential tumor suppressor in several tumor types. However, the roles of CASC2 and its interplay with miR-21 in different malignancy grade patient gliomas remain unexplored. Here we screened 99 different malignancy grade astrocytomas for CASC2, and miR-21 gene expression by real-time quantitative polymerase chain reaction (RT-qPCR) in isocitrate dehydrogenase 1 (IDH1) and O-6-methylguanine methyltransferase (MGMT) assessed gliomas. CASC2 expression was significantly downregulated in glioblastomas (p = 0.0003). Gliomas with low CASC2 expression exhibited a high level of miR-21, which was highly associated with the higher glioma grade (p = 0.0001), IDH1 wild type gliomas (p < 0.0001), and poor patient survival (p < 0.001). Taken together, these observations suggest that CASC2 acts as a tumor suppressor and potentially as a competing endogenous RNA (ceRNA) for miR-21, plays important role in IDH1 wild type glioma pathogenesis and patients' outcomes.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , MicroRNAs/genética , Proteínas Supressoras de Tumor/genética , Neoplasias Encefálicas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Masculino , Gradação de Tumores , Regiões Promotoras Genéticas , Análise de Sobrevida
7.
Sci Rep ; 10(1): 9169, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514186

RESUMO

This study aimed to examine the influence of thyroid hormone (TH) levels and genetic polymorphisms of deiodinases on long-term outcomes after acute myocardial infarction (AMI). In total, 290 patients who have experienced AMI were evaluated for demographic, clinical characteristics, risk factors, TH and NT-pro-BNP. Polymorphisms of TH related genes were included deiodinase 1 (DIO1) (rs11206244-C/T, rs12095080-A/G, rs2235544-A/C), deiodinase 2 (DIO2) (rs225015-G/A, rs225014-T/C) and deiodinase 3 (DIO3) (rs945006-T/G). Both all-cause and cardiac mortality was considered key outcomes. Cox regression model showed that NT-pro-BNP (HR = 2.11; 95% CI = 1.18- 3.78; p = 0.012), the first quartile of fT3, and DIO1 gene rs12095080 were independent predictors of cardiac-related mortality (HR = 1.74; 95% CI = 1.04-2.91; p = 0.034). The DIO1 gene rs12095080 AG genotype (OR = 3.97; 95% CI = 1.45-10.89; p = 0.005) increased the risk for cardiac mortality. Lower fT3 levels and the DIO1 gene rs12095080 are both associated with cardiac-related mortality after AMI.


Assuntos
Iodeto Peroxidase/genética , Infarto do Miocárdio/mortalidade , Polimorfismo Genético , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Prognóstico , Risco
8.
Cells ; 9(1)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861636

RESUMO

High-grade astrocytomas are some of the most common and aggressive brain cancers, whose signs and symptoms are initially non-specific. Up to the present date, there are no diagnostic tools to observe the early onset of the disease. Here, we analyzed the combination of blood serum proteins, which may play key roles in the tumorigenesis and the progression of glial tumors. Fifty-nine astrocytoma patients and 43 control serums were analyzed using Custom Human Protein Antibody Arrays, including ten targets: ANGPT1, AREG, IGF1, IP10, MMP2, NCAM1, OPN, PAI1, TGFß1, and TIMP1. The decision tree analysis indicates that serums ANGPT1, TIMP1, IP10, and TGFß1 are promising combinations of targets for glioma diagnostic applications. The accuracy of the decision tree algorithm was 73.5% (75/102), which correctly classified 79.7% (47/59) astrocytomas and 65.1% (28/43) healthy controls. The analysis revealed that the relative value of osteopontin (OPN) protein level alone predicted the 12-month survival of glioblastoma (GBM) patients with the specificity of 84%, while the inclusion of the IP10 protein increased model predictability to 92.3%. In conclusion, the serum protein profiles of ANGPT1, TIMP1, IP10, and TGFß1 were associated with the presence of astrocytoma independent of its malignancy grade, while OPN and IP10 were associated with GBM patient survival.


Assuntos
Astrocitoma/diagnóstico , Astrocitoma/mortalidade , Proteínas Sanguíneas/análise , Glioblastoma/diagnóstico , Glioblastoma/mortalidade , Angiopoietina-1/sangue , Astrocitoma/metabolismo , Estudos de Casos e Controles , Quimiocina CXCL10/sangue , Árvores de Decisões , Progressão da Doença , Feminino , Glioblastoma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Osteopontina/sangue , Prognóstico , Sensibilidade e Especificidade , Análise de Sobrevida , Inibidor Tecidual de Metaloproteinase-1/sangue , Fator de Crescimento Transformador beta1/sangue
9.
J Oncol ; 2019: 1232434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467531

RESUMO

BACKGROUND: Gliomas are the most common and aggressive among primary malignant brain tumours with significant inter- and intratumour heterogeneity in histology, molecular profile, and patient outcome. However, molecular targets that could provide reliable diagnostic and prognostic information on this type of cancer are currently unknown. Recent studies show that certain phenotypes of gliomas such as malignancy, resistance to therapy, and relapses are associated with the epigenetic alterations of tumour-specific genes. Runt-related transcription factor 3 (RUNX3) is feasible tumour suppressor gene since its inactivation was shown to be related to carcinogenesis. AIM: The aim of the study was to elucidate RUNX3 changes in different regulation levels of molecular biology starting from epigenetics to function in particular cases of astrocytic origin tumours of different grade evaluating significance of molecular changes of RUNX3 for patient clinical characteristics as well as evaluate RUNX3 reexpression effect to GBM cells. METHODS: The methylation status and protein expression levels of RUNX3 were measured by methylation-specific PCR and Western blot in 136 and 72 different malignancy grade glioma tissues, respectively. Lipotransfection and MTT were applied for proliferation assessment in U87-MG cells. RESULTS: We found that RUNX3 was highly methylated and downregulated in GBM. RUNX3 promoter methylation was detected in 69.4% of GBM (n=49) as compared to 0 to 17.2% in I-III grade astrocytomas (n=87). Weighty lower RUNX3 protein level was observed in GMB specimens compared to grade II-III astrocytomas. Correlation test revealed a weak but significant link among Runx3 methylation and protein level. Kaplan-Meier analysis showed that increased RUNX3 methylation and low protein level were both associated with shorter patient survival (p<0.05). Reexpression of RUNX3 in U87-MG cells significantly reduced glioma cell viability compared to control transfection. CONCLUSIONS: The results demonstrate that RUNX3 gene methylation and protein expression downregulation are glioma malignancy dependent and contribute to tumour progression.

10.
Sci Rep ; 9(1): 5406, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932010

RESUMO

Gliomas are heterogeneous, primary brain tumours that originate from glial cells. The main type of gliomas is astrocytomas. There are four grades (I-IV) of astrocytoma malignancy. Astrocytoma grade IV known as glioblastoma multiforme (GBM) is the most common and aggressive type of astrocytic gliomas. Metallothioneins (MT) are low molecular weight, cysteine rich proteins encoded by a family of metallothionein (MT) genes. MT genes play a crucial role in carcinogenesis of diverse malignancies. We proposed MT genes as prognostic markers for malignant astrocytoma. MT1A, MT1E, MT1X, MT2, MT3 gene expression was elevated in grade IV astrocytomas (glioblastomas) as compared to astrocytomas grade I-III. Statistically significant differences were reached for MT1A and MT2 genes (Mann-Whitney test, p < 0.05). High MT1A, MT1X, MT2, MT3 genes expression was associated with shorter patient survival (Log-rank test, p < 0.05). MT1A gene promoter methylation was decreased in glioblastoma (57.6%) while the gene was highly methylated in grade II-III astrocytoma (from 66.7% to 83.3%) and associated with better patient survival (p < 0.05). MT1A gene methylation showed a trend of being associated with higher mRNA expression level in astrocytomas. Increased MT genes expression in grade IV astrocytomas as compared to I-III grade astrocytomas could be associated with malignant tumour behaviour and progression.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Metalotioneína/genética , RNA Mensageiro/genética , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Metilação de DNA , Progressão da Doença , Humanos , Estimativa de Kaplan-Meier , Metalotioneína/metabolismo , Gradação de Tumores , Regiões Promotoras Genéticas/genética
11.
J Cancer ; 10(6): 1479-1488, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031857

RESUMO

Background: Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor which levels was shown to have a tight coherence with various types of cancer. AREG was also designated to be a promising marker for several types of cancer however precious little data about AREG role in the most frequent and generally lethal human brain tumours - astrocytomas reported up to date. The aim of the study was to investigate how AREG changes at epigenetic and expression levels reflect on astrocytoma malignancy and patient outcome. Methods: In total 205 low and high grade astrocytoma samples (15 pilocytic astrocytomas, 56 diffuse astrocytomas, 32 anaplastic astrocytomas and 102 glioblastomas) were used for target mRNA, protein expression and DNA methylation analysis applying qRT-PCR, Western-Blot and MS-PCR assays, respectively. Results: Present research revealed that AREG expression level and methylation in cancer tissue is dependent on the grade of astrocytoma. GBM tissue disclosed elevated AREG mRNA expression but reduced AREG protein level as compared to grade II and grade III astrocytomas (p<0.001). Increased methylation frequency was also more abundant in GBM (74%) than grade I, II and III astrocytomas (25%, 34%, and 36%, respectively). The survival analysis revealed relevant differences in patient overall survival between AREG methylation, mRNA and protein expression groups. Kaplan-Meier analysis encompassing only malignant tumours showed similar results indicating that AREG is associated with astrocytoma patient survival independently from astrocytoma grade. Conclusions: Current findings demonstrate that AREG appearance is associated with patient survival as well as astrocytomas malignancy indicating its influence on tumour progression and suggest its applicability as a promising marker.

12.
J Cancer ; 9(23): 4496-4502, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519355

RESUMO

Glial fibrillary acidic protein (GFAP) is an intermediate filament that provides mechanical support to astrocytes. Rs2070935 is a single nucleotide polymorphism (SNP) located in the promoter region of the GFAP gene. The aim of this pilot study is to investigate GFAP expression at mRNA, protein levels and rs2070935 polymorphism in 50 different grade human astrocytoma samples. GFAP expression at mRNA level was measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR) with SYBR Green dye, whereas the translational activity of the following gene was detected using western blot assay. Furthermore, genotypes of rs2070935 were identified using qPCR with TaqMan probes. As a result, GFAP mRNA and protein expression was found to be declining with increasing astrocytoma grade (p < 0.05). A tendency was observed between increased GFAP mRNA expression and shorter grade IV astrocytoma patient survival (p = 0.2117). The rs2070935 CC genotype was found to be associated with increased GFAP translational activity in grade II astrocytoma (p = 0.0238). Possible links between rs2070935 genotypes and alternative splicing of GFAP were also observed. The rs2070935 AA genotype was found to be associated with poor clinical outcome for grade IV astrocytoma patients (p = 0.0007), although the following data should be checked in a larger sample size of astrocytoma patients.

13.
Genet Test Mol Biomarkers ; 22(4): 270-278, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29641285

RESUMO

AIM: To investigate the association among deiodinases (DIO), organic anion-transporting polypeptide 1C1 (OATP1C1) gene polymorphisms, and thyroid hormones (THs) in patients with acute myocardial infarction (AMI). METHODS: In summary, 290 patients with AMI were evaluated for sociodemographic and clinical characteristics, coronary artery disease (CAD) risk factors, and comorbidities, as well as circulating thyroid-stimulating hormone and TH (triiodothyronine [T3], thyroxine [T4], free T3, free T4, and reverse T3) levels. Ten single nucleotide polymorphisms for thyroid axis related genes: DIO1 (rs11206244-C/T, rs12095080-A/G, rs2235544-A/C), DIO2 (rs225014-T/C, rs225015-G/A), DIO3 (rs945006-T/G), and OATP1C1 (rs10444412-T/C, rs10770704-C/T, rs1515777-A/G, rs974453-G/A) were genotyped. RESULTS: Marginal associations were observed between the DIO1, DIO2, and OATP1C1 gene polymorphisms and almost all analyzed THs (p's < 0.05). After controlling for potential confounders, the OATP1C1 rs1515777-A/G minor allele homozygous genotype (G/G) was associated with a decrease in circulating free T3 and free T3/free T4. In the AMI cohort, associations between: DIO1 rs12095080 and hypertension; DIO2 rs225015 and diabetes mellitus; and the OATP1C1 rs974453 genotype, and AMI type were established. CONCLUSIONS: DIO1 and DIO2 gene polymorphisms are mainly associated with T3, free T4, free T3/free T4, and [natural-log transformed (ln)] reverse T3 levels, while the OATP1C1 minor allele homozygous genotype is associated with free T3 and free T3/free T4 in CAD patients after AMI.


Assuntos
Iodeto Peroxidase/genética , Infarto do Miocárdio/fisiopatologia , Transportadores de Ânions Orgânicos/genética , Peptídeos/genética , Polimorfismo de Nucleotídeo Único , Hormônios Tireóideos/genética , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Hormônios Tireóideos/sangue
14.
Int J Clin Exp Pathol ; 11(6): 3010-3018, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31938426

RESUMO

Gliomas are fast growing and usually manifest in an aggressive infiltrative model. MMP2 overexpression is associated with brain tumor malignancy and metastasis formation. The aim of this study was to investigate the influence of MMP2 on glioma formation and clinical outcomes by performing analysis at the DNA, RNA, and protein levels. Methylation status and mRNA level were evaluated in 162 samples; the MMP2 protein level was analyzed in 28 patient preoperative and postoperative blood samples using protein microarray analysis and conventional ELISA. The MMP2 MSP analysis revealed a gradually increasing gene promoter demethylation frequency, and the Kaplan-Meier analysis showed that the methylated gene promoter is related to longer overall survival (Log-rank test X 2 = 12.508, df = 1, P < 0.0001). Relative mRNA expression was significantly downregulated when the promoter was methylated. Pairwise comparison analysis showed statistically significant (Mann-Whitney test, P < 0.05) differences in the MMP2 expression median when comparing different glioma grades. The Kaplan-Meier analysis revealed that low MMP2 expression was associated with better survival (Log-rank test X 2 = 7.732, df = 1, P = 0.005). At the protein level, MMP2 expression in patient sera showed no differences between malignancy grades and patient preoperative and postoperative states, while the ELISA assay showed the tendency of accumulating MMP2 protein in higher malignancy patient sera samples. The Kaplan-Meier analysis showed the tendency of having a shorter survival time with a higher MMP2 protein level in patient sera. MMP2 has a significant role in glioma pathogenesis and could be used as a potential molecular marker for tumor progression.

15.
BMC Med Genet ; 18(1): 72, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28709401

RESUMO

BACKGROUND: Pituitary adenoma (PA) is a benign brain tumor that can cause neurological, endocrinological and ophthalmological aberrations. Till now there is a need to identify factors that can influence the tumor invasiveness and recurrence. The aim of this study was to evaluate the associations between the signal transducer and activator of transcription 3 (STAT3) promoter methylation, mRNA expression and the invasiveness or recurrence of PAs and patient clinical characteristics. METHODS: Study participants comprised of 102 subjects with a diagnosis of PA: 54 functioning and 48 non-functioning, 58 invasive and 30 non-invasive PAs and 14 relapses. The bisulfite treatment of tumor DNA and methylation-specific polymerase chain reaction (MS-PCR) method was used to determine the STAT3 gene promoter methylation. For the STAT3 mRNA expression, the first-strand cDNA was produced from total RNA by using reverse transcriptase and quantitative real-time PCR (qRT-PCR) was performed. RESULTS: In 10.78% (11/102) of PA tissues STAT3 gene promoter was methylated. A gender of male and patient group older than 60 years were significantly associated with reduced STAT3 mRNA expression (Mann-Whitney test, p = 0.025, p = 0.047, respectively). However, no more statistical differences were found between STAT3 promoter methylation, mRNA expression and patient clinical characteristics or PA invasiveness or recurrence. CONCLUSIONS: Further investigations are needed to clarify the influence of STAT3 gene promoter methylation and mRNA expression changes in PAs.


Assuntos
Neoplasias Hipofisárias/genética , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/genética , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Recidiva Local de Neoplasia/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
16.
Oncol Lett ; 12(5): 3305-3311, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27899997

RESUMO

Astrocytomas are one of the most common brain tumours; however, the current methods used to characterize these tumours are inadequate. The establishment of molecular markers may identify variables required to improve tumour characterization and subtyping, and may aid to specify targets for improved treatment with essential prognostic value for patient survival. One such candidate is testin (TES), which was reported to have prognostic value for glioblastoma patients. However, the role of TES protein in gliomagenesis is currently unknown. In the present study, the methylation status of the TES promoter was investigated in post-operative astrocytoma tumours of different malignancy grade, and its association with the survival of astrocytoma patients was evaluated. In addition, the expression of TES protein was investigated in the same set of astrocytoma tumours tissue, and the association of protein expression with glioma patients survival was evaluated. The methylation status of TES was assessed by methylation-specific polymerase chain reaction in 138 different grade astrocytoma samples. Western blot analysis was used to characterize the expression pattern of TES in 86 different grade astrocytoma specimens: 13 of pathological grade I, 31 of pathological grade II, 17 of pathological grade III and 25 of pathological grade IV (glioblastoma). Statistical analyses were conducted to investigate the association between tumour molecular pattern, patient clinical variables and overall survival. The methylation analysis of the TES promoter exhibited a distinct profile between astrocytomas of different malignancy grade (P<0.001). Furthermore, gene promoter methylation was significantly associated with patients' age, survival and pathological grade (P<0.001). The protein expression level of TES was significantly lower in glioblastoma (grade IV astrocytoma) than in lower grade (II-III) astrocytoma tissue (P=0.028 and P=0.04, respectively). Additionally, short overall survival of patients was markedly associated with low TES protein expression (P=0.007). However, no association between TES methylation and TES protein expression was noticed. The present study demonstrated that decreased expression of TES may be important in tumour progression and prognosis in human astrocytomas. TES may be a useful marker for predicting the clinical outcome of astrocytoma patients.

17.
Diagn Pathol ; 11: 42, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27121858

RESUMO

BACKGROUND: Survival of glioma patients with the same tumor histology and grade can vary significantly, and some low-grade gliomas transform to a more malignant phenotype. There is a need of molecular signatures, which are better predictors of the patient diagnosis, outcome of treatment, and prognosis than the diagnosis provided by histopathology. We propose CHI3L1 mRNA expression as a prognostic biomarker for patients with glioma. METHODS: We measured CHI3L1 expression with quantitative real time-polymerase chain reaction (qRT-PCR) in the cohort of 98 patients with different grade glioma: 10 grade I pylocytic astrocytomas, 30 grade II diffuse astrocytomas, 20 grade III anaplastic astrocytomas, and 38 grade IV astrocytomas (glioblastomas). Statistical analyses were conducted to investigate the association between CHI3L1 mRNA expression levels and patient clinical variables. RESULTS: We demonstrated that mRNA expression of CHI3L1 was evidently higher in glioblastoma than in lower grade glioma tissues. We evaluated correlations between CHI3L1 expression, clinicopathological characteristics, and the outcomes of the patients. Patients with high CHI3L1 expression had a shorter overall survival (p < 0.001). CONCLUSIONS: Findings presented in our study showed that increased mRNA level of CHI3L1 could be associated with the progression of astrocytoma and poor patient survival not only for glioblastoma, but for lower grade astrocytoma tumors as well. Further investigation will be required to evaluate CHI3L1 value as a molecular marker for astrocytoma prognoses and for novel treatment strategies against all grade astrocytomas.


Assuntos
Adipocinas/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Glioma/genética , Lectinas/genética , Astrocitoma/genética , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Proteína 1 Semelhante à Quitinase-3 , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioma/mortalidade , Glioma/patologia , Glioma/cirurgia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Fatores de Tempo , Regulação para Cima
18.
Diagn Pathol ; 10: 58, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26032848

RESUMO

BACKGROUND: Malignant gliomas are characterized by the tendency of cancerous glial cells to infiltrate into normal brain tissue, thereby complicating targeted treatment of this type of cancer. Recent studies suggested involvement of Sema3C (semaphorin 3C) protein in tumorigenesis and metastasis in a number of cancers. The role of Sema3C in gliomagenesis is currently unclear. In this study, we investigated how expression levels of Sema3C in post-operative glioma tumors are associated with the malignancy grade and the survival of the patient. FINDINGS: Western blot analysis was used for detection of Sema3C protein levels in 84 different grade glioma samples: 12 grade I astrocytomas, 30 grade II astrocytomas, 17 grade III astrocytomas, and 25 grade IV astrocytomas (glioblastomas). Sema3C mRNA levels in gliomas were analysed by real-time PCR. Several statistical methods have been used to investigate associations between Sema3C protein and mRNA levels and clinical variables and survival outcome. The results demonstrated that protein levels of Sema3C were markedly increased in glioblastomas compared to grade I-III astrocytoma tissues and were significantly associated with the shorter overall survival of patients. High accumulation of Sema3C positively associated with the age of patients and pathological grade, but did not correlate with patient's gender. Sema3C mRNA levels showed no association with either grade of glioma or patient survival. CONCLUSIONS: The data presented in this work suggest that the increased levels of Sema3C protein may be associated with the progression of glioma tumor and has a potential as a prognostic marker for outcome of glioma patients. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1564066714158642.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/química , Glioma/química , Semaforinas/análise , Biomarcadores Tumorais/genética , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Progressão da Doença , Feminino , Glioma/genética , Glioma/mortalidade , Glioma/patologia , Glioma/cirurgia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Semaforinas/genética , Resultado do Tratamento , Regulação para Cima
19.
J Cancer ; 5(6): 446-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847385

RESUMO

AIMS: NDRG2 (N-myc downstream regulated gene 2) gene is involved in important biological processes: cell differentiation, growth and apoptosis. Several molecular studies have shown NDRG2 as a promising diagnostic marker involved in brain tumor pathology. The aim of the study was to investigate how changes in epigenetic modification and activity of NDRG2 reflect on glioma malignancy and patient outcome. METHODS: 137 different malignancy grade gliomas were used as the study material: 14 pilocytic astrocytomas grade I, 45 diffuse astrocytomas grade II, 29 anaplastic astrocytomas grade III, and 49 grade IV astrocytomas (glioblastomas). Promoter methylation analysis has been carried out by using methylation-specific PCR, whereas RT-PCR and Western-blot analyses were used to measure NDRG2 expression levels. RESULTS: We demonstrated that NDRG2 gene methylation frequency increased whereas expression at both mRNA and protein levels markedly decreased in glioblastoma specimens compared to the lower grade astrocytomas. NDRG2 transcript and protein levels did not correlate with the promoter methylation state, suggesting the presence of alternative regulatory gene expression mechanisms that may operate in a tissue-specific manner in gliomas. Kaplan-Meier analyses revealed significant differences in survival time in gliomas stratified by NDRG2 methylation status and mRNA and protein expression levels. CONCLUSIONS: Our findings highlight the usefulness of combining epigenetic data to gene expression patterns at mRNA and protein level in tumor biomarker studies, and suggest that NDRG2 downregulation might bear influence on glioma tumor progression while being associated with higher malignancy grade.

20.
J Neurooncol ; 113(3): 441-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23624749

RESUMO

Epigenetic alterations alone or in combination with genetic mechanisms play a key role in brain tumorigenesis. Glioblastoma is one of the most common, lethal and poor clinical outcome primary brain tumors with extraordinarily miscellaneous epigenetic alterations profile. The aim of this study was to investigate new potential prognostic epigenetic markers such as AREG, HOXA11, hMLH1, NDRG2, NTPX2 and Tes genes promoter methylation, frequency and value for patients outcome. We examined the promoter methylation status using methylation-specific polymerase chain reaction in 100 glioblastoma tissue samples. The value for clinical outcome was calculated using Kaplan-Meier estimation with log-rank test. DNA promoter methylation was frequent event appearing more than 45 % for gene. AREG and HOXA11 methylation status was significantly associated with patient age. HOXA11 showed the tendency to be associated with patient outcome in glioblastomas. AREG gene promoter methylation showed significant correlation with poor patient outcome. AREG methylation remained significantly associated with patient survival in a Cox multivariate model including MGMT promoter methylation status. This study of new epigenetic targets has shown considerably high level of analyzed genes promoter methylation variability in glioblastoma tissue. AREG gene might be valuable marker for glioblastoma patient survival prognosis, however further analysis is needed to clarify the independence and appropriateness of the marker.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Metilação de DNA , Glioblastoma/genética , Regiões Promotoras Genéticas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Anfirregulina , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Proteína C-Reativa/genética , Proteínas do Citoesqueleto/genética , Família de Proteínas EGF , Feminino , Seguimentos , Glioblastoma/mortalidade , Glioblastoma/patologia , Glicoproteínas/genética , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas com Domínio LIM/genética , Masculino , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase , Prognóstico , Proteínas de Ligação a RNA , Taxa de Sobrevida , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA