RESUMO
Transient neonatal diabetes mellitus (TNDM) is a genetically heterogeneous form of neonatal diabetes characterized by hyperglycemia that remits during infancy with a tendency to recur in later life. This case report presents the history of a male infant with transient neonatal diabetes mellitus. The patient was treated with a continuous subcutaneous insulin infusion (CSII) and a continuous glucose monitoring (CGM) system until the age of 2 months, when the normoglycemia connected with a withdrawal of treatment was noted. The genetic test results excluded the majority of known mutations related to TNDM. This case report focuses on various genetic mutations and the clinical features connected with them that cause TNDM and highlights the difficulties in the diagnostic and therapeutic processes of this disease. CSII and CGM systems seem to be a safe and effective treatment option in TNDM and may be used in the therapy.
RESUMO
Variations in several nuclear genes predisposing humans to the development of MODY diabetes have been very well characterized by modern genetic diagnostics. However, recent reports indicate that variants in the mtDNA genome may also be associated with the diabetic phenotype. As relatively little research has addressed the entire mitochondrial genome in this regard, the aim of the present study is to evaluate the genetic variations present in mtDNA among individuals susceptible to MODY diabetes. In total, 193 patients with a MODY phenotype were tested with a custom panel with mtDNA enrichment. Heteroplasmic variants were selected for further analysis via further sequencing based on long-range PCR to evaluate the potential contribution of frequent NUMTs (acronym for nuclear mitochondrial DNA) insertions. Twelve extremely rare variants with a potential damaging character were selected, three of which were likely to be the result of NUMTs from the nuclear genome. The variant m.3243A>G in MT-TL1 was responsible for 3.5% of MODY cases in our study group. In addition, a novel, rare, and possibly pathogenic leucine variant m.12278T>C was found in MT-TL2. Our findings also found the MT-CO1 gene to be over-represented in the study group, with a clear phenotype-genotype correlation observed in one family. Our data suggest that heteroplasmic variants in MT-COI and MT-TL2 genes may play a role in the pathophysiology of glucose metabolism in humans.
Assuntos
Diabetes Mellitus Tipo 2 , Genoma Mitocondrial , Humanos , DNA Mitocondrial/genética , Mutação , Fenótipo , Diabetes Mellitus Tipo 2/genéticaRESUMO
Introduction: In the past few years, the advancement of 16S rRNA metagenomic analysis sequencing has enabled assessing the impact of gut microbiota on the development of skin disease. Alopecia areata (AA) is a nonscarring hair loss disorder with an unknown etiopathogenesis, however, it is hypothesised that a combination of genetic and environmental factors might be involved. Although numerous studies have shown that the microbiome plays a key role at the beginning of skin diseases, the link between AA and gut dysbiosis remains unclear. Aim: To analyse the intestinal microbiome in patients suffering from AA. Material and methods: The study describes the conceivable involvement of gut microbiota in the unclear pathogenesis of AA. We enrolled 25 patients, over 18 years of age with an active state of AA who donated their stool samples. The samples were examined at the human gut microbial community at the species level by metataxonomic analysis of the full-length 16S V3-V4 sequencing. Results: The four major genera that constitute the microbiome's core are Lachnoclostridium, Bifidobacterium, Streptococcus, and Eubacterium, as well as three major phyla: Firmicutes, Proteobacteria, and Actinobacteria. Firmicutes and Proteobacteria are overrepresented in the microflora, which might suggest a disturbed microflora. Furthermore, the composition of bacterial communities suggests a loss of overall richness and a decrease in taxonomic diversity across all samples. Conclusions: This study describes, for the first time, the characteristics of the gut microbiome in AA patients and may provide new insight into the gut microbiome that may play a role in the development of AA.