Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38920603

RESUMO

Nowadays, biosensors are gaining increasing interest in foods' and beverages' quality control, owing to their economic production, enhanced sensitivity, specificity, and faster analysis. In particular, colorimetric biosensors can be combined with color recognition applications on smartphones for the detection of analytes, rendering the whole procedure more applicable in everyday life. Herein, chitosan (CS) films were prepared with the deep eutectic solvent (DES) choline chloride/urea/glycerol (ChCl:U:Gly). Glucose oxidase (GOx), a widely utilized enzyme in quality control, was immobilized within CS films through glutaraldehyde (GA), leading to the formation of CS/GOx films. The optimized GOx concentration and DES content were determined for the films. Moreover, the effect of the pH and temperature of the glucose oxidation reaction on the enzymatic activity of GOx was studied. The structure, stability, and specificity of the CS/GOx films as well as the Km values of free and immobilized GOx were also determined. Finally, the analytical performance of the films was studied by using both a spectrophotometer and a color recognition application on a smartphone. The results demonstrated that the films were highly accurate, specific to glucose, and stable when stored at 4 °C for 4 weeks and when reused 10 times, without evident activity loss. Furthermore, the films displayed a good linear response range (0.1-0.8 mM) and a good limit of detection (LOD, 33 µM), thus being appropriate for the estimation of glucose concentration in real samples through a smartphone application.


Assuntos
Bebidas , Técnicas Biossensoriais , Quitosana , Colorimetria , Glucose Oxidase , Glucose , Smartphone , Quitosana/química , Glucose/análise , Bebidas/análise , Glucose Oxidase/química , Enzimas Imobilizadas/química
2.
Micromachines (Basel) ; 15(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38399016

RESUMO

Microfluidic devices have attracted much attention in the current day owing to the unique advantages they provide. However, their application for industrial use is limited due to manufacturing limitations and high cost. Moreover, the scaling-up process of the microreactor has proven to be difficult. Three-dimensional (3D) printing technology is a promising solution for the above obstacles due to its ability to fabricate complex structures quickly and at a relatively low cost. Hence, combining the advantages of the microscale with 3D printing technology could enhance the applicability of microfluidic devices in the industrial sector. In the present work, a 3D-printed single-channel immobilized enzyme microreactor with a volume capacity of 30 µL was designed and created in one step via the fused deposition modeling (FDM) printing technique, using polylactic acid (PLA) as the printing material. The microreactor underwent surface modification with chitosan, and ß-glucosidase from Thermotoga maritima was covalently immobilized. The immobilized biocatalyst retained almost 100% of its initial activity after incubation at different temperatures, while it could be effectively reused for up to 10 successful reaction cycles. Moreover, a multi-channel parallel microreactor incorporating 36 channels was developed, resulting in a significant increase in enzymatic productivity.

3.
Micromachines (Basel) ; 13(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422383

RESUMO

In this study, 3D printing technology was exploited for the development of immobilized enzyme microreactors that could be used for biocatalytic processes in Deep Eutectic Solvent (DES)-based media. 3D-printed polylactic acid (PLA) microwell plates or tubular microfluidic reactors were modified with polyethylenimine (PEI) and lipase from Candida antarctica (CALB) was covalently immobilized in the interior of each structure. DESs were found to have a negligible effect on the activity and stability of CALB, and the system proved highly stable and reusable in the presence of DESs for the hydrolysis of p-nitrophenyl butyrate (p-NPB). A kinetic study under flow conditions revealed an enhancement of substrate accessibility in the presence of Betaine: Glycerol (Bet:Gly) DES, while the system was not severely affected by diffusion limitations. Incubation of microreactors in 100% Bet:Gly preserved the enzyme activity by 53% for 30 days of storage at 60 °C, while the buffer-stored sample had already been deactivated. The microfluidic enzyme reactor was efficiently used for the trans-esterification of ethyl ferulate (EF) with glycerol towards the production of glyceryl ferulate (GF), known for its antioxidant potential. The biocatalytic process under continuous flow conditions exhibited 23 times higher productivity than the batch reaction system. This study featured an effective and robust biocatalytic system with immobilized lipase that can be used both in hydrolytic and synthetic applications, while further optimization is expected to upgrade the microreactor system performance.

4.
Methods Mol Biol ; 2487: 163-175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35687235

RESUMO

3D printing is lately utilized in biological sciences under the scope to develop customized scaffolds that will host biomolecules, either whole cells or parts of them, like enzymes. In the present work, we present a protocol to modify the surface of 3D printed polylactic acid (PLA) well-plates with the aim to co-immobilize multiple enzymes that will perform cascade reactions. Detailed steps to design and print the final models are described. The developed protocol for surface modification is based on coating with chitosan biopolymer and covalent immobilization of the enzymes ß-glucosidase, glucose oxidase, and peroxidase via glutaraldehyde cross-linking. Enzymatic activity measurements indicative of the catalytic performance of the system are also presented.


Assuntos
Quitosana , Poliésteres , Enzimas Imobilizadas , Impressão Tridimensional
5.
J Biotechnol ; 350: 75-85, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35430300

RESUMO

Process sustainability of biocatalytic processes is significantly empowered with the use of continuous-flow technologies that offer high productivity, minimal wastes and low volumetric consumption. Combining microreactor design with 3D printing technology can broaden the engineering potentials. This work proposes a protocol to modify the surface of 3D-printed PLA scaffolds, based on chitosan deposition. Mimicking the concept of microplates, multi-well plates were designed to facilitate parameter testing. Immobilization of laccase from Trametes versicolor was successfully performed, while chitosan and cross-linker concentration and incubation time were optimized. Τhe developed protocol was applied for the continuous flow bioconversion of hydroxyyrosol, yielding a TTN of 438.6 × 103 for a total of 10 h continuous use. Also, a peristaltic flow pattern seemed to favor the system performance, reaching 95% bioconversion efficiency in a total of 1 h reaction time. The potential of the developed system was further evaluated for the biotransformation of different biophenols from dietary sources, proving the efficiency of the system as a versatile biotechnological tool.


Assuntos
Quitosana , Trametes , Lacase/metabolismo , Poliésteres , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA