Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(5): 114, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074596

RESUMO

KEY MESSAGE: We identified marker-trait associations for key faba bean agronomic traits and genomic signatures of selection within a global germplasm collection. Faba bean (Vicia faba L.) is a high-protein grain legume crop with great potential for sustainable protein production. However, little is known about the genetics underlying trait diversity. In this study, we used 21,345 high-quality SNP markers to genetically characterize 2678 faba bean genotypes. We performed genome-wide association studies of key agronomic traits using a seven-parent-MAGIC population and detected 238 significant marker-trait associations linked to 12 traits of agronomic importance. Sixty-five of these were stable across multiple environments. Using a non-redundant diversity panel of 685 accessions from 52 countries, we identified three subpopulations differentiated by geographical origin and 33 genomic regions subjected to strong diversifying selection between subpopulations. We found that SNP markers associated with the differentiation of northern and southern accessions explained a significant proportion of agronomic trait variance in the seven-parent-MAGIC population, suggesting that some of these traits were targets of selection during breeding. Our findings point to genomic regions associated with important agronomic traits and selection, facilitating faba bean genomics-based breeding.


Assuntos
Fabaceae , Vicia faba , Vicia faba/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Fabaceae/genética
2.
Theor Appl Genet ; 135(1): 125-143, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34628514

RESUMO

KEY MESSAGE: Accurate genomic prediction of yield within and across generations was achieved by estimating the genetic merit of individual white clover genotypes based on extensive genetic replication using cloned material. White clover is an agriculturally important forage legume grown throughout temperate regions as a mixed clover-grass crop. It is typically cultivated with low nitrogen input, making yield dependent on nitrogen fixation by rhizobia in root nodules. Here, we investigate the effects of clover and rhizobium genetic variation by monitoring plant growth and quantifying dry matter yield of 704 combinations of 145 clover genotypes and 170 rhizobium inocula. We find no significant effect of rhizobium variation. In contrast, we can predict yield based on a few white clover markers strongly associated with plant size prior to nitrogen fixation, and the prediction accuracy for polycross offspring yield is remarkably high. Several of the markers are located near a homolog of Arabidopsis thaliana GIGANTUS 1, which regulates growth rate and biomass accumulation. Our work provides fundamental insight into the genetics of white clover yield and identifies specific candidate genes as breeding targets.


Assuntos
Genes de Plantas , Fixação de Nitrogênio , Rhizobium leguminosarum/fisiologia , Trifolium/genética , Variação Genética , Genótipo , Modelos Genéticos , Desenvolvimento Vegetal/genética , Rhizobium leguminosarum/classificação , Rhizobium leguminosarum/isolamento & purificação , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/microbiologia
3.
Nat Commun ; 11(1): 253, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937774

RESUMO

Colonization of new habitats is expected to require genetic adaptations to overcome environmental challenges. Here, we use full genome re-sequencing and extensive common garden experiments to investigate demographic and selective processes associated with colonization of Japan by Lotus japonicus over the past ~20,000 years. Based on patterns of genomic variation, we infer the details of the colonization process where L. japonicus gradually spread from subtropical conditions to much colder climates in northern Japan. We identify genomic regions with extreme genetic differentiation between northern and southern subpopulations and perform population structure-corrected association mapping of phenotypic traits measured in a common garden. Comparing the results of these analyses, we find that signatures of extreme subpopulation differentiation overlap strongly with phenotype association signals for overwintering and flowering time traits. Our results provide evidence that these traits were direct targets of selection during colonization and point to associated candidate genes.


Assuntos
Aclimatação/genética , Lotus/genética , Evolução Biológica , Genes de Plantas/genética , Variação Genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genótipo , Geografia , Japão , Lotus/crescimento & desenvolvimento , Lotus/fisiologia , Fenótipo , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA