Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1031783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504788

RESUMO

Polylactide (PLA) materials treated with antimicrobial fillers represent a suitable alternative to the production of medical devices. Their advantage is that they can prevent the growth of microorganisms and the formation of microbial biofilms on the surface and around composites. The work is focused on the evaluation of biocompatibility and biocide effect of PLA composite films filled with vermiculite and graphene oxide modified with silver (Ag+ and Ag nanoparticles), hexadecylpyridinium (HDP) and hexadecyltrimethylammonium (HDTMA) cations and their degradation leachates monitored at 1-3-6-month intervals. The antimicrobial effect of the leachates was detected by microdilution methods on gram-negative (Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis), gram-positive (Staphylococcus aureus, Streptococcus salivarius) bacteria and yeast (Candida albicans). The biocidal effect of composites on biofilm formation on the surface of composites was monitored by Christensen method and autoaggregation and motility tests. The biocompatibility of the composite and the leachates was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cytotoxicity assay. The evaluation of the antimicrobial effect of the leachates demonstrated that leachates of PLA composite filled with graphene oxide and Ag+ showed a stronger antimicrobial effect than leachates of PLA composite filled with vermiculite and Ag+ and Ag nanoparticles. The leachates of PLA composites containing vermiculite with HDP and HDTMA cations had a higher antimicrobial effect on G+ bacteria and yeast than G- bacteria. Bacterial growth, biofilm formation, autoaggregation and motility of the tested bacteria were most inhibited by the composite with vermiculite and Ag+ and Ag nanoparticles. Even after a 6-month degradation of this composite, bacterial growth and biofilm formation continued to be strongly inhibited up to 42 and 91%, respectively. The cytotoxic effect was proved only in the leachate of the composite with vermiculite containing HDP after 6 months of its degradation. Tests evaluating the biocompatibility of materials have shown that the vermiculite is the most preferred carrier and can be used in the future to bind other compounds. The study confirmed that PLA composite filled with vermiculite and Ag+ and Ag nanoparticles was the most stable and effective composite with the best biocompatible and biocidal properties.

2.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580474

RESUMO

The preparation of hybrid polymeric systems based on carbon derivatives with a cationic polymer is described. The polymer used is a copolymer of a quaternizable methacrylic monomer with another dopamine-based monomer capable of anchoring to carbon compounds. Graphene oxide and graphene as well as hybrid polymeric systems were widely characterized by infrared, Raman and photoemission X-ray spectroscopies, electron scanning microscopy, zeta potential and thermal degradation. These allowed confirming the attachment of copolymer onto carbonaceous materials. Besides, the antimicrobial activity of hybrid polymeric systems was tested against Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The results showed the antibacterial character of these hybrid systems.

3.
J Hazard Mater ; 382: 121001, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31454610

RESUMO

Chemical warfare agents are still a threat to humanity despite the existence of a ban on their production and use. There are many new materials that have been experimentally verified to be effective in degrading and eliminating various chemical warfare agents; however, clay minerals still remain very effective, environmentally friendly and not expensive. Vermiculites modified with hexadecylpyridinium, hexadecyltrimethylammonium and tetramethylammonium cations were used for static sorption of vapours of two simulants of nerve agents: dimethyl methyl phosphonate and diethyl ethyl phosphonate. The materials before and after sorption were characterized using infrared spectroscopy, X-ray diffraction and carbon phase analysis. The breakthrough time and capture of simulants were measured using dynamic sorption test. Molecular modelling was used to confirm the experimental results and provide a deeper insight into the structure of the materials and sorption processes.

4.
Nanomaterials (Basel) ; 9(11)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683612

RESUMO

Biodegradable polymers are promising materials for use in medical applications such as stents. Their properties are comparable to commercially available resistant metal and polymeric stents, which have several major problems, such as stent migration and stent clogging due to microbial biofilm. Consequently, conventional stents have to be removed operatively from the patient's body, which presents a number of complications and can also endanger the patient's life. Biodegradable stents disintegrate into basic substances that decompose in the human body, and no surgery is required. This review focuses on the specific use of stents in the human body, the problems of microbial biofilm, and possibilities of preventing microbial growth by modifying polymers with antimicrobial agents.

5.
Biotechnol Adv ; 37(1): 154-176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30481544

RESUMO

Chemical, physical and mechanical methods of nanomaterial preparation are still regarded as mainstream methods, and the scientific community continues to search for new ways of nanomaterial preparation. The major objective of this review is to highlight the advantages of using green chemistry and bionanotechnology in the preparation of functional low-cost catalysts. Bionanotechnology employs biological principles and processes connected with bio-phase participation in both design and development of nano-structures and nano-materials, and the biosynthesis of metallic nanoparticles is becoming even more popular due to; (i) economic and ecologic effectiveness, (ii) simple one-step nanoparticle formation, stabilisation and biomass support and (iii) the possibility of bio-waste valorisation. Although it is quite difficult to determine the precise mechanisms in particular biosynthesis and research is performed with some risk in all trial and error experiments, there is also the incentive of understanding the exact mechanisms involved. This enables further optimisation of bionanoparticle preparation and increases their application potential. Moreover, it is very important in bionanotechnological procedures to ensure repeatability of the methods related to the recognised reaction mechanisms. This review, therefore, summarises the current state of nanoparticle biosynthesis. It then demonstrates the application of biosynthesised metallic nanoparticles in heterogeneous catalysis by identifying the many examples where bionanocatalysts have been successfully applied in model reactions. These describe the degradation of organic dyes, the reduction of aromatic nitro compounds, dehalogenation of chlorinated aromatic compounds, reduction of Cr(VI) and the synthesis of important commercial chemicals. To ensure sustainability, it is important to focus on nanomaterials that are capable of maintaining the important green chemistry principles directly from design inception to ultimate application.


Assuntos
Biotecnologia/tendências , Catálise , Química Verde/tendências , Nanopartículas Metálicas/química , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA