Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Materials (Basel) ; 17(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591996

RESUMO

In this study, a carbon ceramic electrode (CCE) with improved electroanalytical performance was developed by bulk-modifying it with bismuth(III) oxide nanoparticles (Bi-CCE). Characterization of the Bi-CCE was conducted employing atomic force microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. Comparative analysis was conducted using an unmodified CCE. The findings proved that the incorporation of Bi2O3 nanoparticles into the CCE significantly altered the morphology and topography of the ceramic composite, and it improved the electrochemical properties of CCE. Notably, the Bi-CCE demonstrated a prolonged operational lifespan of at least three months, and there was a high reproducibility of the electrode preparation procedure. The developed Bi-CCE was effectively employed to explore the electrochemical behavior and quantify the priority environmental pollutant 4-chloro-3-methylphenol (PCMC) using CV and square-wave voltammetry (SWV), respectively. Notably, the developed SWV procedure utilizing Bi-CCE exhibited significantly enhanced sensitivity (0.115 µA L mol-1), an extended linearity (0.5-58.0 µmol L-1), and a lower limit of detection (0.17 µmol L-1) in comparison with the unmodified electrode. Furthermore, the Bi-CCE was utilized effectively for the detection of PCMC in a river water sample intentionally spiked with the compound. The selectivity toward PCMC determination was also successfully assessed.

2.
Materials (Basel) ; 17(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399092

RESUMO

This study outlines the fabrication process of an electrochemical platform utilizing glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and palladium nanoparticles (PdNPs). The MWCNTs were applied on the GCE surface using the drop-casting method and PdNPs were produced electrochemically by a potentiostatic method employing various programmed charges from an ammonium tetrachloropalladate(II) solution. The resulting GCEs modified with MWCNTs and PdNPs underwent comprehensive characterization for topographical and morphological attributes, utilizing atomic force microscopy and scanning electron microscopy along with energy-dispersive X-ray spectrometry. Electrochemical assessment of the GCE/MWCNTs/PdNPs involved cyclic voltammetry (CV) and electrochemical impedance spectroscopy conducted in perchloric acid solution. The findings revealed even dispersion of PdNPs, and depending on the electrodeposition parameters, PdNPs were produced within four size ranges, i.e., 10-30 nm, 20-40 nm, 50-60 nm, and 70-90 nm. Additionally, the electrocatalytic activity toward formaldehyde oxidation was assessed through CV. It was observed that an increase in the size of the PdNPs corresponded to enhanced catalytic activity in the formaldehyde oxidation reaction on the GCE/MWCNTs/PdNPs. Furthermore, satisfactory long-term stability over a period of 42 days was noticed for the GCE/MWCNTs/PDNPs(100) material which demonstrated the best electrocatalytic properties in the electrooxidation reaction of formaldehyde.

3.
Food Chem ; 442: 138407, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241999

RESUMO

This study involved an investigation into the electrochemical characteristic of a few biogenic amines (BAs) occurring at the polarized interface between two immiscible electrolyte solutions (ITIES) with ion transfer voltammetry (ITV). The main focus of this research was the comprehensive electroanalytical and physicochemical analysis of phenylethylamine (PEA), allowing the determined of the formal Galvani potential of the ion transfer reaction (ΔorgaqΦ'), diffusion coefficients (D), formal free Gibbs energy of the ion transfer reaction (ΔG'aq→org) and water-1,2-dichloroethane partition coefficient (logPwater/DCEPEA). Furthermore, the collected data were employed to calculate analytical parameters, including voltametric detection sensitivity, limits of detection and the target analyte quantification. Moreover, the influence of the presence of 7 other BAs (histamine, spermine, spermidine, putrescine, cadaverine, tyramine and tryptamine) on the recorded signals originating from the PEA ion transfer was checked. The feasibility of the developed method was corroborated through experimentation with milk samples. Additionally, utilizing the devised methodology, an electrochemical assessment of the spoilage progression in milk samples was undertaken.


Assuntos
Aminas Biogênicas , Leite , Animais , Leite/química , Eletroquímica , Aminas Biogênicas/análise , Histamina/análise , Água
4.
Sci Rep ; 13(1): 8485, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231085

RESUMO

A study on voltammetric analysis of blood serum diluted in a phosphate buffer is presented using advanced square-wave voltammetry at an edge plane pyrolytic graphite electrode. The results demonstrate that even in a complex medium like human blood serum, electrochemical characterization can be achieved through the use of advanced voltammetric techniques in conjunction with an appropriate commercially available electrode, such as the edge plane pyrolytic graphite electrode, which boosts superior electrocatalytic properties. Without undergoing any chemical treatment of the serum sample, the square-wave voltammetry technique reveals, for the first time, the electrode reactions of uric acid, bilirubin, and albumin in a single experiment, as represented by well-defined, separated, and intense voltammetric signals. All electrode processes are surface-confined, indicating that the edge plane sites of the electrode serve as an ideal platform for the competitive adsorption of electroactive species, despite the extensive chemical complexity of the serum samples. The speed and differential nature of square-wave voltammetry are crucial for obtaining an outstanding resolution of the voltammetric peaks, maintaining the quasi-reversible nature of the underlying electrode processes, while reducing the impact of follow-up chemical reactions that are coupled to the initial electron transfer for all three detected species, and minimizing fouling of the electrode surface.


Assuntos
Grafite , Humanos , Grafite/química , Soro , Transporte de Elétrons , Indicadores e Reagentes , Eletrodos
5.
Mikrochim Acta ; 190(5): 182, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052720

RESUMO

Two benzodiazepine type drugs, that is, nitrazepam and 7-aminonitrazepam, were studied at the electrified liquid-liquid interface (eLLI). Both drugs are illicit and act sedative in the human body and moreover are used as date rape drugs. Existence of the diazepine ring in the concerned chemicals structure and one additional amine group (for 7-aminonitrazepam) allows for the molecular charging below their pKa values, and hence, both drugs can cross the eLLI interface upon application of the appropriate value of the Galvani potential difference. Chosen molecules were studied at the macroscopic eLLI formed in the four electrode cell and microscopic eLLI formed within a microtip defined as the single pore having 25 µm in diameter. Microscopic eLLI was formed using only a few µL of the organic and the aqueous phase with the help of a 3D printed cell. Parameters such as limit of detection and voltammetric detection sensitivity are derived from the experimental data. Developed methodology was used to detect nitrazepam in pharmaceutical formulation and both drugs (nitrazepam and 7-aminonitrazepam) in spiked biological fluids (urine and blood).


Assuntos
Hipnóticos e Sedativos , Nitrazepam , Humanos , Eletrodos , Água
6.
Anal Chim Acta ; 1249: 340936, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-36868771

RESUMO

BACKGROUND: Fungicide fenhexamid (FH) has a high residual concentration on fruits and vegetables, thus, it is of high importance to monitor the level of FH residues on foodstuff samples. So far, the assay of FH residues in selected foodstuff samples has been conducted by electroanalytical methods on sp2 carbon-based electrodes that are well-known to be susceptible to severe fouling of the electrodes surfaces during electrochemical measurements. As an alternative, sp3 carbon-based electrode such as boron-doped diamond (BDD) can be used in the analysis of FH residues retained on the peel surface of foodstuff (blueberries) sample. RESULTS: In situ anodic pretreatment of the BDDE surface was found to be the most successful strategy to remediate the passivated BDDE surface by FH oxidation (by)products, and the best validation parameters, i.e., the widest linear range (3.0-100.0 µmol L-1), the highest sensitivity (0.0265 µA L µmol-1) and the lowest limit of detection (0.821 µmol L-1), were achieved on the anodically pretreated BDDE (APT-BDDE) in a Britton-Robinson buffer, pH 2.0, using square-wave voltammetry (SWV). The assay of FH residues retained on blueberries peel surface was performed on the APT-BDDE using SWV, and the obtained concentration of FH residues of 6.152 µmol L-1 (1.859 mg kg-1) was found to be below the maximum residue value fixed for blueberries by the European Union regulations (20 mg kg-1). SIGNIFICANCE AND NOVELTY: In this work, a protocol based on a very easy and fast foodstuff sample preparation procedure combined with the straightforward pretreatment approach of the BDDE surface was elaborated for the first time for the monitoring of the level of FH residues retained on the peel surface of blueberries samples. The presented reliable, cost-effective, and easy-to-use protocol could find its application as a rapid screening method for the control of food safety.


Assuntos
Mirtilos Azuis (Planta) , Boro , Carbono , Eletrodos
7.
Sci Rep ; 12(1): 18615, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329050

RESUMO

Simple sensing protocols for the detection of illicit drugs are needed. Electrochemical sensing is especially attractive in this respect, as its cost together with the analytical accuracy aspires to replace still frequently used colorimetric tests. In this work, we have shown that the interfacial transfer of protonated heroin can be followed at the electrified water-1,2-dichloroethane interface. We have comprehensively studied the interfacial behavior of heroin alone and in the presence of its major and abundant cutting agents, caffeine and paracetamol. To maximally increase developed sensing protocol applicability we have designed and 3D printed a platform requiring only a few microliters of the aqueous and the organic phase. The proposed sensing platform was equipped with a cavity hosting a short section of Ag/AgCl electrode, up to 20 µL of the aqueous phase and the end of the micropipette tip being used as a casing of a fused silica capillary having 25 µm as the internal pore diameter. The volume of the organic phase was equal to around 5 µL and was present inside the micropipette tip. We have shown that under optimized conditions heroin can be detected in the presence of caffeine and paracetamol existing in a sample with 10,000 times excess over the analyte of interest. The calculated limit of detection equal to 1.3 µM, linear dynamic range spanning to at least 50 µM, good reproducibility, and very low volume of needed sample is fully in line with forensic demands.


Assuntos
Acetaminofen , Heroína , Reprodutibilidade dos Testes , Cafeína , Impressão Tridimensional
8.
Crit Rev Anal Chem ; : 1-92, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35968923

RESUMO

Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.

9.
Materials (Basel) ; 15(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35329648

RESUMO

The interfacial polycondensation of titanium dioxide was studied at the bare and fiberglass membrane supported polarized liquid-liquid interface (LLI). Titanium dioxide synthesis was derived from the titanium (IV) tetrabutoxide (initially dissolved in the 1,2-dichloroethane) interfacial hydrolysis followed by its condensation. Experimental parameters, such as the pH of the aqueous phase and the influence of titanium alkoxide concentration in the organic phase on the electrochemical signal and material morphology, were investigated. The latter was achieved with fiberglass membranes used as the LLI support during TiO2 interfacial deposition. Cyclic voltammetry was used for the in situ studies, whereas scanning electron microscopy, energy-dispersive X-ray spectroscopy, and infrared spectroscopy were used during ex situ examination. The interfacial polycondensation reaction could be studied using electrified LLI and resulted in the material being a TiO2 film alone or film decorated with particles.

10.
Talanta ; 237: 122904, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736717

RESUMO

In this work, we have focused on the profiling of 5647 street samples covering marijuana, common and new recreational illicit drugs. All samples were analyzed using gas chromatography-mass spectrometry (GC-MS) technique. In total we have identified 53 illicit drugs with Δ-9-tetrahydrocannabinol (THC), amphetamine, N-ethylhexedrone, 3,4-methylenedioxy methamphetamine (MDMA), 4-chloromethcathinone (4-CMC), α-pyrrolidinoisohexaphenone (α-PHiP), cocaine, and 4-chloroethcathinone (4-CEC) being most commonly found and making 38.5, 17.8, 15.5, 8.0, 3.5, 2.7, 2.1, and 2.0% of the total studied pool, respectively. Except for methadone, all analyzed street samples were spiked with at least one cutting agent. Caffeine was the most frequently found adulterating addition present in around 33% (excluding marijuana) of the analyzed samples. Other identified cutting agents make an impressive group of more than 160 compounds. Finally, we have tabulated, illustrated, and discussed presented data in a view of smart and portable sensors development.


Assuntos
Cocaína , Drogas Ilícitas , Metanfetamina , Anfetamina/análise , Cocaína/análise , Cromatografia Gasosa-Espectrometria de Massas , Metanfetamina/análise , Detecção do Abuso de Substâncias
11.
Mikrochim Acta ; 188(12): 413, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34751834

RESUMO

The electrochemical behavior of cefotaxime (CTX+) was investigated at the polarized macro- and micro-interface between two immiscible electrolyte solutions (ITIES) by cyclic voltammetry and alternating current voltammetry. Miniaturization was achieved with fused silica microcapillary tubing entrapped in a polymeric casing. Scanning electron microscopy (SEM) was employed for the fabricated LLI support characterization. Voltammetric investigation of CTX+ at macro- and µ-ITIES allowed the determination of many physicochemical parameters, such as formal Galvani potential of the ion transfer reaction ([Formula: see text]), diffusion coefficients (D), formal free Gibbs energy of the ion transfer reaction (∆G'aq → org), and water-1,2-dichloroethane partition coefficient ([Formula: see text]). Additionally, based on the results obtained the analytical parameters including voltammetric sensitivity, limits of detection and the limits of quantification (in micromolar range) were calculated. The applicability of the developed procedures was verified in spiked still mineral and tap water samples.


Assuntos
Antibacterianos/química , Cefotaxima/química , Eletrólitos/química , Miniaturização , Soluções/química
12.
Molecules ; 26(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209723

RESUMO

The catalytic influence of methionine (Mt) on the electroreduction of Bi(III) ions on the novel, cyclically renewable liquid silver amalgam film electrode (R-AgLAFE) in a non-complexing electrolyte solution was examined. The presence of methionine leads to a multistep reaction mechanism, where the transfer of the first electron is the rate limiting step, which is the subject of catalytic augmentation. The catalytic activity of methionine is a consequence of its ability to remove water molecules from the bismuth ion coordination sphere, as well as to form active complexes on the electrode surface, facilitating the electron transfer process.

13.
Materials (Basel) ; 14(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067921

RESUMO

The presented work focuses on the application of spectroscopic methods, such as Infrared Spectroscopy (IR), Fourier Transform Infrared Spectroscopy (FT-IR), Raman spectroscopy, Ultraviolet and Visible Spectroscopy (UV-Vis), X-ray spectroscopy, and Mass Spectrometry (MS), which are widely employed in the investigation of the surface properties of dental materials. Examples of the research of materials used as tooth fillings, surface preparation in dental prosthetics, cavity preparation methods and fractographic studies of dental implants are also presented. The cited studies show that the above techniques can be valuable tools as they are expanding the research capabilities of materials used in dentistry.

14.
Food Chem ; 364: 130417, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175631

RESUMO

In this work we report an electrochemical approach to quantitative and qualitative analysis of quinine (QN) at the interface between two immiscible electrolyte solutions (ITIES). This was done at the macroscopic (macroITIES) and microscopic (µITIES) systems using ion transfer voltammetry (ITV). The linear response of the peak current vs. increasing concentrations of QN at the µITIES was from 2.50 µM to 29.13 µM and the corresponding calculated limit of detection (LOD) for the current signals originating from QN transfer from the aqueous to the organic phase was equal to 0.49 µM. Additionally, the influence of pH (2-12) of the aqueous phase on the recorded QN signals was investigated. We have found that our method is fully applicable for QN direct determination in non-treated tonic water, as confirmed on three different real samples from three different manufacturers. Finally, a number of validation parameters for the developed method are provided and discussed.


Assuntos
Quinina , Água , Limite de Detecção
15.
Analyst ; 146(4): 1376-1385, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33403382

RESUMO

This work is focused on the electroanalytical study of a family of five imidazolium-terminated carbosilane dendrimers (from generation G1 to G3) at the polarized liquid-liquid interface formed between water and 1,2-dichloroethane solutions. All dendrimers with permanently and positively charged imidazolium groups located at the periphery within the branched carbosilane core were found to be electrochemically active. Based on the concentration and scan rate dependencies we have concluded that these molecules undergo interfacial ion transfer processes accompanied by interfacial adsorption/desorption rather than the electrochemically induced interfacial formation of the macromolecule-anion (tetrakis(4-chlorophenyl)borate) from the organic phase complex. Also, we report several physicochemical and electroanalytical parameters (e.g. diffusion coefficients, LODs, and detection sensitivities) for the studied family of dendrimers. Our work aims to contribute to the understating of the interaction between branched macromolecules and biomimetic interfaces.


Assuntos
Dendrímeros , Adsorção , Dicloretos de Etileno , Silanos
16.
Food Chem ; 338: 127975, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32950865

RESUMO

A completely new electroanalytical method for the determination of fenhexamid (FNX) residues in fruit samples has been developed. This method is based on anodic oxidation of fungicide in Britton-Robinson buffer (pH 4) containing 10% (v/v) methanol using square-wave voltammetry when five different carbon-based electrodes were tested. An electrochemical behaviour of FNX was studied on a glassy carbon electrode using cyclic voltammetry, while glassy carbon paste electrode was selected for analytical purposes. Linear range for FNX from 3.96 to 49.50 µmol L-1 characterized by coefficient of determination of 0.9964, sensitivity of 0.176 µA L µmol-1, and detection limit of 1.32 µmol L-1 were calculated. Results acquired from analyses of blueberries and wine grapes were compared to those obtained by a reference chromatographic method, and a satisfactory agreement has been reached. Finally, it seems that the present voltammetric approach could find its application in food quality control as screening assay.


Assuntos
Amidas/análise , Carbono/química , Eletroquímica/instrumentação , Análise de Alimentos/instrumentação , Frutas/química , Vitis/química , Vinho/análise , Eletrodos , Fungicidas Industriais/análise , Oxirredução , Resíduos de Praguicidas/análise , Fatores de Tempo
17.
J Hazard Mater ; 402: 123411, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32711385

RESUMO

In this work, we have examined an electrochemical behavior of the ephedrine at the polarized liquid-liquid interface (water/1,2-dichloroethane). In this respect, we first designed and then 3D printed polyamide-based electrochemical cell that was used as the liquid-liquid interface support during electroanalytical measurements. The protonated ephedrine undergoes a reversible ion transfer reaction with the standard Galvani potential difference equal to +0.269 V. This value was used to calculate the water - 1,2-dichloroethane logP equal to -4.6. Ion transfer voltammetry was used to build the calibration curve and allowed for the ephedrine detection from concentration equal to 20 µM. By varying the pH of the aqueous phase from 2 up to 12 we were able to plot the ion partition diagram that was further analyzed and provided several pharmacochemical information. To further push this work towards practical utility, we have formulated the artificial urine and studied the interfacial behavior of all its components at the polarized liquid-liquid interface. Ephedrine detection from real spiked urine samples was also performed.


Assuntos
Efedrina , Dicloretos de Etileno , Impressão Tridimensional , Efedrina/química , Água
18.
Bioelectrochemistry ; 134: 107529, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32311664

RESUMO

In this work, we have simultaneously examined, electrochemically driven deposition of three proteins (haemoglobin, acid phosphatase, and α-amylase) and silica films at a polarized liquid-liquid interface. The interfacial adsorption of the proteins occurs efficiently within the acidic pH range (pH = 2-4). The interfacial charge transfer reactions recorded in the presence of fully positivity charged macromolecules were followed with cyclic voltammetry on the positive side of the potential window. Faradaic currents attributed to the presence of proteins in the aqueous phase appeared for concentrations equal to ca. 0.1 µM for haemoglobin and acid phosphatase and ca. 1 µM for the α-amylase. Concomitant deposition of silica films was achieved via the addition of tetraethoxysilane molecules to the organic phase (1,2-dichloroethane). The hydrolysis and condensation reactions of tetraethoxysilane were controlled via the interfacial transfer of H+ coinciding with the potential for protein adsorption. The effect of tetraethoxysilane concentration - up to 50% by volume - revealed significant shrinkage of the potential window (the region where capacitive currents are recorded). The optimized platform was then used to prepare silica-proteins co-deposits. These could be easily collected from the interface and further analyzed with infrared spectroscopy and transmission electron microscopy.


Assuntos
Eletrólitos/química , Proteínas Imobilizadas/química , Dióxido de Silício/química , Galvanoplastia , Soluções , Solventes/química , Propriedades de Superfície
19.
Anal Chim Acta ; 1085: 75-84, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31522733

RESUMO

In this paper, the electrochemical behavior of four fluoroquinolone antibiotics (FAs) [Ciprofloxacin (Cip), Enrofloxacin (Enr), Marbofloxacin (Mar) and Ofloxacin (Ofl)] at a polarized interface between two immiscible electrolyte solutions (ITIES) has been studied using ion-transfer voltammetry (ITV). The measurements were conducted in the traditional macroscopic (macro-ITIES) and a recently developed miniaturized (micro-ITIES) platform. The latter was obtained from fused silica micro-capillaries having an internal diameter of 25 µm. We used macroITIES to obtain a number of analytical parameters such as: standard Galvani potential of ion transfer (ΔΦ0), diffusion coefficients (D), free Gibbs energy of ion transfer (ΔG0) and partition coefficients (logPDCE). The latter were compared with the available literature values of logPoctanol. The effect of concentration of the studied antibiotics on the electrochemical response was investigated with the microITIES platform, setting statistical parameters such as: linear dynamic ranges (LDRs - studied from 1 µM up to 50 µM), lower limit of detections (LODs - around 1 µM) and sensitivity (found in the range from 2.6·10-2 to 6.8·10-2 nA·µM-). MicroITIES were further used to study the effect of pH on the analytical signal and the results are plotted in a form of ion partition diagrams. Working with microITIES supported with the fused silica capillaries significantly reduced the volumes of consumed chemicals and expedite all analytical experiments. The provided results can be successfully applied in pharmacology and electroanalysis for testing and determination of the chosen fluoroquinolone antibiotics.


Assuntos
Antibacterianos/análise , Técnicas Eletroquímicas , Dicloretos de Etileno/química , Fluoroquinolonas/análise , Água/química , Transporte de Íons , Estrutura Molecular
20.
J Sep Sci ; 42(17): 2858-2866, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31243868

RESUMO

Steroid hormones as endocrine disrupting compounds can interfere with the functioning of hormonal systems of organisms and thus affect the health and reproduction of humans and wildlife. Unfortunately, these types of harmful endocrine disrupting compounds have been found in a variety of environmental samples at very low concentrations. Therefore, a simple, fast, and efficient method for enrichment of water samples is needed. A molecularly imprinted solid-phase extraction combined with high performance liquid chromatography coupled with diode array detection was developed for the determination of six steroid hormones, such as estrone, 17-ß-estradiol, estriol, 17-α-ethinylestradiol, progesterone, and testosterone in water samples. The recoveries obtained in the proposed method were in the range of 78.7-101.3%. Matrix effect below 20% suggests that the quantitative and qualitative results of the analysis were not significantly affected by the matrix. The results show that molecularly imprinted polymers based on spherical silica gel had the potential to be a highly innovative and selective sorbent. The proposed method was proved to be applicable for molecularly imprinted solid-phase extraction in selective and reliable extraction and enrichment of steroid hormones in environmental water samples.


Assuntos
Hormônios Esteroides Gonadais/análise , Impressão Molecular , Polímeros/química , Dióxido de Silício/química , Poluentes Químicos da Água/análise , Tamanho da Partícula , Porosidade , Extração em Fase Sólida , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA