Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Med Chem ; 12(8): 1428-1441, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34447939

RESUMO

In 2005, the NIH Molecular Libraries Program (MLP) undertook the identification of tool compounds to expand biological insights, now termed small-molecule chemical probes. This inspired other organisations to initiate similar efforts from 2010 onwards. As a central focus of the Probes & Drugs portal (P&D), we have standardised, integrated and compared sets of declared probe compounds harvested from 12 different sources. This turned out to be challenging and revealed unexpected anomalies. Results in this work address key questions including; a) individual and total structure counts, b) overlaps between sources, c) comparisons with selected PubChem sources and d) investigating the probe coverage of druggable targets. In addition, we developed new high-level scoring schemes to filter collections down to probes of higher quality. This generated 548 high-quality chemical probes (HQCP) covering 447 distinct protein targets. This HQCP collection has been added to the P&D portal and will be regularly updated as established sources expand and new ones release data.

2.
J Cheminform ; 12(1): 41, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33431016

RESUMO

Affinity fingerprints report the activity of small molecules across a set of assays, and thus permit to gather information about the bioactivities of structurally dissimilar compounds, where models based on chemical structure alone are often limited, and model complex biological endpoints, such as human toxicity and in vitro cancer cell line sensitivity. Here, we propose to model in vitro compound activity using computationally predicted bioactivity profiles as compound descriptors. To this aim, we apply and validate a framework for the calculation of QSAR-derived affinity fingerprints (QAFFP) using a set of 1360 QSAR models generated using Ki, Kd, IC50 and EC50 data from ChEMBL database. QAFFP thus represent a method to encode and relate compounds on the basis of their similarity in bioactivity space. To benchmark the predictive power of QAFFP we assembled IC50 data from ChEMBL database for 18 diverse cancer cell lines widely used in preclinical drug discovery, and 25 diverse protein target data sets. This study complements part 1 where the performance of QAFFP in similarity searching, scaffold hopping, and bioactivity classification is evaluated. Despite being inherently noisy, we show that using QAFFP as descriptors leads to errors in prediction on the test set in the ~ 0.65-0.95 pIC50 units range, which are comparable to the estimated uncertainty of bioactivity data in ChEMBL (0.76-1.00 pIC50 units). We find that the predictive power of QAFFP is slightly worse than that of Morgan2 fingerprints and 1D and 2D physicochemical descriptors, with an effect size in the 0.02-0.08 pIC50 units range. Including QSAR models with low predictive power in the generation of QAFFP does not lead to improved predictive power. Given that the QSAR models we used to compute the QAFFP were selected on the basis of data availability alone, we anticipate better modeling results for QAFFP generated using more diverse and biologically meaningful targets. Data sets and Python code are publicly available at https://github.com/isidroc/QAFFP_regression .

3.
Zebrafish ; 15(6): 642-647, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30234459

RESUMO

Small fish species, such as zebrafish and medaka, are increasingly gaining popularity in basic research and disease modeling as a useful alternative to rodent model organisms. However, the tracking options for fish within a facility are rather limited. In this study, we present an aquatic species tracking database, Zebrabase, developed in our zebrafish research and breeding facility that represents a practical and scalable solution and an intuitive platform for scientists, fish managers, and caretakers, in both small and large facilities. Zebrabase is a scalable, cross-platform fish tracking database developed especially for fish research facilities. Nevertheless, this platform can be easily adapted for a wide variety of aquatic model organisms housed in tanks. It provides sophisticated tracking, reporting, and management functions that help keep animal-related records well organized, including a QR code functionality for tank labeling. The implementation of various user roles ensures a functional hierarchy and customized access to specific functions and data. In addition, Zebrabase makes it easy to personalize rooms and racks, and its advanced statistics and reporting options make it an excellent tool for creating periodic reports of animal usage and productivity. Communication between the facility and the researchers can be streamlined by the database functions. Finally, Zebrabase also features an interactive breeding history and a smart interface with advanced visualizations and intuitive color coding that accelerate the processes.


Assuntos
Criação de Animais Domésticos/métodos , Animais de Laboratório , Aquicultura/métodos , Software , Peixe-Zebra , Criação de Animais Domésticos/organização & administração , Animais , Aquicultura/organização & administração , Bases de Dados Factuais , Processamento Eletrônico de Dados , Monitoramento Ambiental
4.
Front Genet ; 9: 45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535760

RESUMO

MicroRNAs (miRNAs) are small RNAs repressing gene expression. They contribute to many physiological processes and pathologies. Consequently, strategies for manipulation of the miRNA pathway are of interest as they could provide tools for experimental or therapeutic interventions. One of such tools could be small chemical compounds identified through high-throughput screening (HTS) with reporter assays. While a number of chemical compounds have been identified in such high-throughput screens, their application potential remains elusive. Here, we report our experience with cell-based HTS of a library of 12,816 chemical compounds to identify miRNA pathway modulators. We used human HeLa and mouse NIH 3T3 cell lines with stably integrated or transiently expressed luciferase reporters repressed by endogenous miR-30 and let-7 miRNAs and identified 163 putative miRNA inhibitors. We report that compounds relieving miRNA-mediated repression via stress induction are infrequent; we have found only two compounds that reproducibly induced stress granules and relieved miRNA-targeted reporter repression. However, we have found that this assay type readily yields non-specific (miRNA-independent) stimulators of luciferase reporter activity. Furthermore, our data provide partial support for previously published miRNA pathway modulators; the most notable intersections were found among anthracyclines, dopamine derivatives, flavones, and stilbenes. Altogether, our results underscore the importance of appropriate negative controls in development of small compound inhibitors of the miRNA pathway. This particularly concerns validation strategies, which would greatly profit from assays that fundamentally differ from the routinely employed miRNA-targeted reporter assays.

6.
J Nat Prod ; 79(12): 3086-3092, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28006905

RESUMO

Silychristin is the second most abundant flavonolignan (after silybin) present in the fruits of Silybum marianum. A group of compounds containing silychristin (3) and its derivatives such as 2,3-dehydrosilychristin (4), 2,3-dehydroanhydrosilychristin (5), anhydrosilychristin (6), silyhermin (7), and isosilychristin (8) were studied. Physicochemical data of these compounds acquired at high resolution were compared. The absolute configuration of silyhermin (7) was proposed to be identical to silychristin A (3a) in ring D (10R,11S). The preparation of 2,3-dehydrosilychristin (4) was optimized. The Folin-Ciocalteau reduction and DPPH and ABTS radical scavenging assays revealed silychristin and its analogues to be powerful antioxidants, which were found to be more potent than silybin and 2,3-dehydrosilybin. Compounds 4-6 exhibited inhibition of microsomal lipoperoxidation (IC50 4-6 µM). Moreover, compounds 4-8 were found to be almost noncytotoxic for 10 human cell lines of different histogenetic origins. On the basis of these results, compounds 3-6 are likely responsible for most of the antioxidant properties of silymarin attributed traditionally to silybin (silibinin).


Assuntos
Antioxidantes/química , Frutas/química , Silybum marianum/química , Silimarina/química , Antioxidantes/farmacologia , Humanos , Estrutura Molecular , Extratos Vegetais/análise , Raízes de Plantas/química , Silibina , Silimarina/farmacologia
7.
J Cheminform ; 6(1): 44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25264459

RESUMO

BACKGROUND: Hierarchical clustering is an exploratory data analysis method that reveals the groups (clusters) of similar objects. The result of the hierarchical clustering is a tree structure called dendrogram that shows the arrangement of individual clusters. To investigate the row/column hierarchical cluster structure of a data matrix, a visualization tool called 'cluster heatmap' is commonly employed. In the cluster heatmap, the data matrix is displayed as a heatmap, a 2-dimensional array in which the colour of each element corresponds to its value. The rows/columns of the matrix are ordered such that similar rows/columns are near each other. The ordering is given by the dendrogram which is displayed on the side of the heatmap. RESULTS: We developed InCHlib (Interactive Cluster Heatmap Library), a highly interactive and lightweight JavaScript library for cluster heatmap visualization and exploration. InCHlib enables the user to select individual or clustered heatmap rows, to zoom in and out of clusters or to flexibly modify heatmap appearance. The cluster heatmap can be augmented with additional metadata displayed in a different colour scale. In addition, to further enhance the visualization, the cluster heatmap can be interconnected with external data sources or analysis tools. Data clustering and the preparation of the input file for InCHlib is facilitated by the Python utility script inchlib_clust. CONCLUSIONS: The cluster heatmap is one of the most popular visualizations of large chemical and biomedical data sets originating, e.g., in high-throughput screening, genomics or transcriptomics experiments. The presented JavaScript library InCHlib is a client-side solution for cluster heatmap exploration. InCHlib can be easily deployed into any modern web application and configured to cooperate with external tools and data sources. Though InCHlib is primarily intended for the analysis of chemical or biological data, it is a versatile tool which application domain is not limited to the life sciences only.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA