Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1396387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774486

RESUMO

Presbycusis is one of the most prevalent disabilities in aged populations of industrialized countries. As we age less excitation reaches the central auditory system from the periphery. To compensate, the central auditory system [e.g., the inferior colliculus (IC)], downregulates GABAergic inhibition to maintain homeostatic balance. However, the continued downregulation of GABA in the IC causes a disruption in temporal precision related to presbycusis. Many studies of age-related changes to neurotransmission in the IC have therefore focused on GABAergic systems. However, we have discovered that dense core vesicles (DCVs) are significantly upregulated with age in the IC. DCVs can carry neuropeptides, co-transmitters, neurotrophic factors, and proteins destined for the presynaptic zone to participate in synaptogenesis. We used immuno transmission electron microscopy across four age groups (3-month; 19-month; 24-month; and 28-month) of Fisher Brown Norway rats to examine the ultrastructure of DCVs in the IC. Tissue was stained post-embedding for GABA immunoreactivity. DCVs were characterized by diameter and by the neurochemical profile (GABAergic/non-GABAergic) of their location (bouton, axon, soma, and dendrite). Our data was collected across the dorsolateral to ventromedial axis of the central IC. After quantification, we had three primary findings. First, the age-related increase of DCVs occurred most robustly in non-GABAergic dendrites in the middle and low frequency regions of the central IC during middle age. Second, the likelihood of a bouton having more than one DCV increased with age. Lastly, although there was an age-related loss of terminals throughout the IC, the proportion of terminals that contained at least one DCV did not decline. We interpret this finding to mean that terminals carrying proteins packaged in DCVs are spared with age. Several recent studies have demonstrated a role for neuropeptides in the IC in defining cell types and regulating inhibitory and excitatory neurotransmission. Given the age-related increase of DCVs in the IC, it will be critical that future studies determine whether (1) specific neuropeptides are altered with age in the IC and (2) if these neuropeptides contribute to the loss of inhibition and/or increase of excitability that occurs during presbycusis and tinnitus.

2.
Resuscitation ; 186: 109735, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36806653

RESUMO

BACKGROUND: Given emerging evidence of rapid non-genomic cytoprotective effects of triiodothyronine (T3), we evaluated the resuscitative efficacy of two nanoparticle formulations of T3 (T3np) designed to prolong cell membrane receptor-mediated signaling. METHODS: Swine (n = 40) were randomized to intravenous vehicle (empty np), EPI (0.015 mg/kg), T3np (0.125 mg/kg), or T3np loaded with phosphocreatine (T3np + PCr; 0.125 mg/kg) during CPR following 7-min cardiac arrest (n = 10/group). Hemodynamics and biomarkers of heart (cardiac troponin I; cTnI) and brain (neuron-specific enolase; NSE) injury were assessed for up to 4-hours post-ROSC, at which time the heart and brain were collected for post-mortem analysis. RESULTS: Compared with vehicle (4/10), the rate of ROSC was higher in swine receiving T3np (10/10; p < 0.01), T3np + PCr (8/10; p = 0.08) or EPI (10/10; p < 0.01) during CPR. Although time to ROSC and survival duration were comparable between groups, EPI was associated with a ∼2-fold higher post-ROSC concentration of cTnI vs T3np and T3np + PCr and the early post-ROSC rise in NSE and neuronal injury were attenuated in T3np-treated vs EPI-treated animals. Analysis of hippocampal ultrastructure revealed deterioration of mitochondrial integrity, reduced active zone length, and increased axonal vacuolization in EPI-treated animals vs controls. However, the frequency of these abnormalities was diminished in animals resuscitated with T3np. CONCLUSIONS: T3np achieved a ROSC rate and post-ROSC survival that was superior to vehicle and comparable to EPI. The attenuation of selected biomarkers of cardiac and neurologic injury at individual early post-ROSC timepoints in T3np-treated vs EPI-treated animals suggests that T3np administration during CPR may lead to more favorable outcomes in cardiac arrest.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Animais , Biomarcadores , Parada Cardíaca/terapia , Suínos , Tórax , Tri-Iodotironina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA