Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 8: 2002-2014, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046847

RESUMO

This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.

2.
ACS Appl Mater Interfaces ; 8(12): 8201-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26953817

RESUMO

Immiscible polymer blends tend to undergo phase separation with the formation of nanoscale architecture which can be used in a variety of applications. Different wet-chemistry techniques already exist to fix the resultant polymeric structure in predictable manner. In this work, an all-dry and plasma-based strategy is proposed to fabricate thin films of microphase-separated polyolefin/polyether blends. This is achieved by directing (-CH2-)100 and (-CH2-CH2-O-)25 oligomer fluxes produced by vacuum thermal decomposition of poly(ethylene) and poly(ethylene oxide) onto silicon substrates through the zone of the glow discharge. The strategy enables mixing of thermodynamically incompatible macromolecules at the molecular level, whereas electron-impact-initiated radicals serve as cross-linkers to arrest the subsequent phase separation at the nanoscale. The mechanism of the phase separation as well as the morphology of the films is found to depend on the ratio between the oligomeric fluxes. For polyolefin-rich mixtures, polyether molecules self-organize by nucleation and growth into spherical domains with average height of 22 nm and average diameter of 170 nm. For equinumerous fluxes and for mixtures with the prevalence of polyethers, spinodal decomposition is detected that results in the formation of bicontinuous structures with the characteristic domain size and spacing ranging between 5 × 10(1) -7 × 10(1) nm and 3 × 10(2)-4 × 10(2) nm, respectively. The method is shown to produce films with tunable wettability and biologically nonfouling properties.

3.
J Phys Chem B ; 113(10): 2984-9, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19708261

RESUMO

Thermal degradation of poly(ethylene oxide) (PEO) was studied under vacuum conditions. PEO macromolecules degrade predominantly by random chain scission of a backbone with elimination of oligomer fragments. The reactions include the mechanism of radical termination by disproportionation. The eliminated fragments form thin film deposits which have chemical composition close to the original PEO. Activation of the evaporated flux with a glow discharge leads to further fragmentation and recombination of the released species and can be used to tune the properties of the resulting thin films.


Assuntos
Polietilenoglicóis/química , Materiais Biocompatíveis/química , Carbono/química , Desenho de Equipamento , Temperatura Alta , Hidrogênio/química , Espectrometria de Massas/métodos , Teste de Materiais , Modelos Químicos , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Vácuo , Água/química
4.
J Biomed Mater Res A ; 88(4): 952-66, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18384161

RESUMO

Nanocomposite Ti/hydrocarbon plasma polymer (Ti/ppCH) films were deposited by DC magnetron sputtering of titanium target in n-hexane, argon, or a mixture of these two gases. The resultant films were heterogeneous, with inorganic regions of nanometer scale distributed within a plasma polymer matrix. The titanium content was controlled by adjusting the argon/n-hexane ratio in the working gas. In the pure n-hexane atmosphere, the Ti concentration was found to be below 1 at %, whereas in pure argon it reached 20 at %, as measured by Rutherford backscattering spectroscopy and elastic recoil detection analysis (RBS/ERDA). A high level of titanium oxidation is detected with TiO(2), substoichiometric titania, and titanium carbide, composing an inorganic phase of the composite films. In addition, high hydrogen content is detected in films rich with titanium. Ti-deficient and Ti-rich films proved equally good substrates for adhesion and growth of cultured human osteoblast-like MG 63 cells. In these cells, the population densities on days 1, 3, and 7 after seeding, spreading area on day 1, formation of talin-containing focal adhesion plaques as well as concentrations of talin and osteocalcin (per mg of protein) were comparable to the values obtained in cells on the reference cell culture materials, represented by microscopic glass coverslips or a polystyrene dish. An interesting finding was made when the Ti/ppCH films were seeded with calf pulmonary artery endothelial cells of the line CPAE. The cell population densities, the spreading area and also the concentration of von Willebrand factor, a marker of endothelial cell maturation, were significantly higher on Ti-rich than on Ti-deficient films. On Ti-rich films, these parameters were also higher or similar in comparison with the reference cell culture materials. Thus, both types of films could be used for coating bone implants, of which the Ti-rich film remains effective in enhancing the endothelialization of blood contacting artificial materials.


Assuntos
Materiais Biocompatíveis/química , Células Endoteliais/fisiologia , Hidrocarbonetos/química , Nanocompostos/química , Osteoblastos/fisiologia , Titânio/química , Animais , Bovinos , Adesão Celular , Diferenciação Celular , Linhagem Celular , Células Endoteliais/citologia , Humanos , Magnetismo , Teste de Materiais , Osteoblastos/citologia , Osteocalcina/metabolismo , Propriedades de Superfície , Talina/metabolismo , Fator de von Willebrand/metabolismo
5.
J Phys Chem B ; 109(48): 23086-95, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16854007

RESUMO

Plasma polymerization of allylamine is performed both in continuous wave and pulsed mode. Chemical derivatization is applied to determine primary and secondary amine concentration. Primary amines are efficiently formed, but secondary amines are more abundant. A polymerization mechanism is proposed to account for the difference in amine content obtained from comparison between continuous wave and pulsed mode plasma polymerization. The AFM measurements performed on ultrathin (1-10 nm) plasma polymers confirm the continuity of films and that the film growth on silicon occurs via a layer-by-layer mechanism because no islandlike structures were detected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA