Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 13(1): 19008, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923761

RESUMO

Natural climate solutions (NCS) are recognized as an important tool for governments to reduce greenhouse gas emissions and remove atmospheric carbon dioxide. Using California as a globally relevant reference, we evaluate the magnitude of biological climate mitigation potential from NCS starting in 2020 under four climate change scenarios. By mid-century NCS implementation leads to a large increase in net carbon stored, flipping the state from a net source to a net sink in two scenarios. Forest and conservation land management strategies make up 85% of all NCS emissions reductions by 2050, with agricultural strategies accounting for the remaining 15%. The most severe climate change impacts on ecosystem carbon materialize in the latter half of the century with three scenarios resulting in California ecosystems becoming a net source of carbon emissions under a baseline trajectory. However, NCS provide a strong attenuating effect, reducing land carbon emissions 41-54% by 2100 with total costs of deployment of 752-777 million USD annually through 2050. Rapid implementation of a portfolio of NCS interventions provides long-term investment in protecting ecosystem carbon in the face of climate change driven disturbances. This open-source, spatially-explicit framework can help evaluate risks to NCS carbon storage stability, implementation costs, and overall mitigation potential for NCS at jurisdictional scales.

2.
Carbon Balance Manag ; 17(1): 1, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35107646

RESUMO

BACKGROUND: Quantifying the carbon balance of forested ecosystems has been the subject of intense study involving the development of numerous methodological approaches. Forest inventories, processes-based biogeochemical models, and inversion methods have all been used to estimate the contribution of U.S. forests to the global terrestrial carbon sink. However, estimates have ranged widely, largely based on the approach used, and no single system is appropriate for operational carbon quantification and forecasting. We present estimates obtained using a new spatially explicit modeling framework utilizing a "gain-loss" approach, by linking the LUCAS model of land-use and land-cover change with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). RESULTS: We estimated forest ecosystems in the conterminous United States stored 52.0 Pg C across all pools. Between 2001 and 2020, carbon storage increased by 2.4 Pg C at an annualized rate of 126 Tg C year-1. Our results broadly agree with other studies using a variety of other methods to estimate the forest carbon sink. Climate variability and change was the primary driver of annual variability in the size of the net carbon sink, while land-use and land-cover change and disturbance were the primary drivers of the magnitude, reducing annual sink strength by 39%. Projections of carbon change under climate scenarios for the western U.S. find diverging estimates of carbon balance depending on the scenario. Under a moderate emissions scenario we estimated a 38% increase in the net sink of carbon, while under a high emissions scenario we estimated a reversal from a net sink to net source. CONCLUSIONS: The new approach provides a fully coupled modeling framework capable of producing spatially explicit estimates of carbon stocks and fluxes under a range of historical and/or future socioeconomic, climate, and land management futures.

3.
Glob Chang Biol ; 26(7): 3920-3929, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32162439

RESUMO

Large-scale terrestrial carbon (C) estimating studies using methods such as atmospheric inversion, biogeochemical modeling, and field inventories have produced different results. The goal of this study was to integrate fine-scale processes including land use and land cover change into a large-scale ecosystem framework. We analyzed the terrestrial C budget of the conterminous United States from 1971 to 2015 at 1-km resolution using an enhanced dynamic global vegetation model and comprehensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) were considered. We estimate annual C losses from cropland harvest, forest clearcut and thinning, fire, and LUCC were 436.8, 117.9, 10.5, and 10.4 TgC/year, respectively. C stored in ecosystems increased from 119,494 to 127,157 TgC between 1971 and 2015, indicating a mean annual net C sink of 170.3 TgC/year. Although ecosystem net primary production increased by approximately 12.3 TgC/year, most of it was offset by increased C loss from harvest and natural disturbance and increased ecosystem respiration related to forest aging. As a result, the strength of the overall ecosystem C sink did not increase over time. Our modeled results indicate the conterminous US C sink was about 30% smaller than previous modeling studies, but converged more closely with inventory data.


Assuntos
Carbono , Ecossistema , Carbono/análise , Sequestro de Carbono , Clima , Mudança Climática , Florestas , Estados Unidos
4.
Glob Chang Biol ; 25(10): 3334-3353, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31066121

RESUMO

Terrestrial ecosystems are an important sink for atmospheric carbon dioxide (CO2 ), sequestering ~30% of annual anthropogenic emissions and slowing the rise of atmospheric CO2 . However, the future direction and magnitude of the land sink is highly uncertain. We examined how historical and projected changes in climate, land use, and ecosystem disturbances affect the carbon balance of terrestrial ecosystems in California over the period 2001-2100. We modeled 32 unique scenarios, spanning 4 land use and 2 radiative forcing scenarios as simulated by four global climate models. Between 2001 and 2015, carbon storage in California's terrestrial ecosystems declined by -188.4 Tg C, with a mean annual flux ranging from a source of -89.8 Tg C/year to a sink of 60.1 Tg C/year. The large variability in the magnitude of the state's carbon source/sink was primarily attributable to interannual variability in weather and climate, which affected the rate of carbon uptake in vegetation and the rate of ecosystem respiration. Under nearly all future scenarios, carbon storage in terrestrial ecosystems was projected to decline, with an average loss of -9.4% (-432.3 Tg C) by the year 2100 from current stocks. However, uncertainty in the magnitude of carbon loss was high, with individual scenario projections ranging from -916.2 to 121.2 Tg C and was largely driven by differences in future climate conditions projected by climate models. Moving from a high to a low radiative forcing scenario reduced net ecosystem carbon loss by 21% and when combined with reductions in land-use change (i.e., moving from a high to a low land-use scenario), net carbon losses were reduced by 55% on average. However, reconciling large uncertainties associated with the effect of increasing atmospheric CO2 is needed to better constrain models used to establish baseline conditions from which ecosystem-based climate mitigation strategies can be evaluated.


Assuntos
Clima , Ecossistema , California , Dióxido de Carbono , Sequestro de Carbono
5.
PLoS One ; 12(10): e0187181, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29088254

RESUMO

With growing demand and highly variable inter-annual water supplies, California's water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined a range of potential water demand futures sampled from a 20-year record of historical (1992-2012) data to develop a suite of potential future land change scenarios, including low/high change scenarios for urbanization and agriculture as well as "lowest of the low" and "highest of the high" anthropogenic use. Future water demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios show agricultural land use decisions will likely drive future demand more than increasing municipal and industrial uses, yet improved efficiencies across all sectors could lead to potential water use savings. Results provide water managers with information on diverging land use and water use futures, based on historical, observed land change trends and water use histories.

6.
Carbon Balance Manag ; 12(1): 2, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28413846

RESUMO

BACKGROUND: Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting. RESULTS: We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985-2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus. CONCLUSIONS: Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha-1/year-1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.

7.
Carbon Balance Manag ; 11(1): 10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27375771

RESUMO

BACKGROUND: Human activities have diverse and profound impacts on ecosystem carbon cycles. The Piedmont ecoregion in the eastern United States has undergone significant land use and land cover change in the past few decades. The purpose of this study was to use newly available land use and land cover change data to quantify carbon changes within the ecoregion. Land use and land cover change data (60-m spatial resolution) derived from sequential remotely sensed Landsat imagery were used to generate 960-m resolution land cover change maps for the Piedmont ecoregion. These maps were used in the Integrated Biosphere Simulator (IBIS) to simulate ecosystem carbon stock and flux changes from 1971 to 2010. RESULTS: Results show that land use change, especially urbanization and forest harvest had significant impacts on carbon sources and sinks. From 1971 to 2010, forest ecosystems sequestered 0.25 Mg C ha-1 yr-1, while agricultural ecosystems sequestered 0.03 Mg C ha-1 yr-1. The total ecosystem C stock increased from 2271 Tg C in 1971 to 2402 Tg C in 2010, with an annual average increase of 3.3 Tg C yr-1. CONCLUSIONS: Terrestrial lands in the Piedmont ecoregion were estimated to be weak net carbon sink during the study period. The major factors contributing to the carbon sink were forest growth and afforestation; the major factors contributing to terrestrial emissions were human induced land cover change, especially urbanization and forest harvest. An additional amount of carbon continues to be stored in harvested wood products. If this pool were included the carbon sink would be stronger.

8.
Glob Chang Biol ; 21(12): 4548-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26207729

RESUMO

The dynamic global vegetation model (DGVM) MC2 was run over the conterminous USA at 30 arc sec (~800 m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B and B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment. The wildfires maintained prairie-forest ecotones in the Great Plains. With simulated fire suppression, the number and impacts of wildfires was reduced as only catastrophic fires were allowed to escape. This greatly increased the expansion of forests and woodlands across the western USA and some of the ecotones disappeared. However, when fires did occur, their impacts (both extent and biomass consumed) were very large. We also evaluated the relative influence of human land use including forest and crop harvest by running the DGVM with land use (and fire suppression) and simple land management rules. From 2041 through 2060, carbon stocks (live biomass, soil and dead biomass) of US terrestrial ecosystems varied between 155 and 162 Pg C across the three emission scenarios when potential natural vegetation was simulated. With land use, periodic harvest of croplands and timberlands as well as the prevention of woody expansion across the West reduced carbon stocks to a range of 122-126 Pg C, while effective fire suppression reduced fire emissions by about 50%. Despite the simplicity of our approach, the differences between the size of the carbon stocks confirm other reports of the importance of land use on the carbon cycle over climate change.


Assuntos
Agricultura , Sequestro de Carbono , Carbono/análise , Mudança Climática , Incêndios , Agricultura Florestal , Simulação por Computador , Ecossistema , Modelos Teóricos , Estados Unidos
9.
Ecol Appl ; 24(5): 1015-36, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25154094

RESUMO

Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S. Geological Survey has produced spatially explicit, thematically detailed LULC projections for the conterminous United States. Four qualitative and quantitative scenarios of LULC change were developed, with characteristics consistent with the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES). The four quantified scenarios (A1B, A2, B1, and B2) served as input to the forecasting scenarios of land-use change (FORE-SCE) model. Four spatially explicit data sets consistent with scenario storylines were produced for the conterminous United States, with annual LULC maps from 1992 through 2100. The future projections are characterized by a loss of natural land covers in most scenarios, with corresponding expansion of anthropogenic land uses. Along with the loss of natural land covers, remaining natural land covers experience increased fragmentation under most scenarios, with only the B2 scenario remaining relatively stable in both the proportion of remaining natural land covers and basic fragmentation measures. Forest stand age was also modeled. By 2100, scenarios and ecoregions with heavy forest cutting had relatively lower mean stand ages compared to those with less forest cutting. Stand ages differed substantially between unprotected and protected forest lands, as well as between different forest classes. The modeled data were compared to the National Land Cover Database (NLCD) and other data sources to assess model characteristics. The consistent, spatially explicit, and thematically detailed LULC projections and the associated forest stand-age data layers have been used to analyze LULC impacts on carbon and greenhouse gas fluxes, biodiversity, climate and weather variability, hydrologic change, and other ecological processes.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Clima , Previsões , Estados Unidos
10.
Environ Monit Assess ; 173(1-4): 251-66, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20217217

RESUMO

We present the first comprehensive multi-temporal analysis of land-cover change for California across its major ecological regions and primary land-cover types. Recently completed satellite-based estimates of land-cover and land-use change information for large portions of the United States allow for consistent measurement and comparison across heterogeneous landscapes. Landsat data were employed within a pure-panel stratified one-stage cluster sample to estimate and characterize land-cover change for 1973-2000. Results indicate anthropogenic and natural disturbances, such as forest cutting and fire, were the dominant changes, followed by large fluctuations between agriculture and rangelands. Contrary to common perception, agriculture remained relatively stable over the 27-year period with an estimated loss of 1.0% of agricultural land. The largest net declines occurred in the grasslands/shrubs class at 5,131 km2 and forest class at 4,722 km2. Developed lands increased by 37.6%, composing an estimated 4.2% of the state's land cover by 2000.


Assuntos
Monitoramento Ambiental/métodos , California , Conservação dos Recursos Naturais , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA