Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Sci Rep ; 13(1): 1628, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36710295

RESUMO

Opsins, light-sensitive G protein-coupled receptors, have been identified in corals but their properties are largely unknown. Here, we identified six opsin genes (acropsins 1-6) from a coral species Acropora millepora, including three novel opsins (acropsins 4-6), and successfully characterized the properties of four out of the six acropsins. Acropsins 1 and 6 exhibited light-dependent cAMP increases in cultured cells, suggesting that the acropsins could light-dependently activate Gs-type G protein like the box jellyfish opsin from the same opsin group. Spectral sensitivity curves having the maximum sensitivities at ~ 472 nm and ~ 476 nm were estimated for acropsins 1 and 6, respectively, based on the light wavelength-dependent cAMP increases in these opsins-expressing cells (heterologous action spectroscopy). Acropsin 2 belonging to the same group as acropsins 1 and 6 did not induce light-dependent cAMP or Ca2+ changes. We then successfully estimated the acropsin 2 spectral sensitivity curve having its maximum value at ~ 471 nm with its chimera mutant which possessed the third cytoplasmic loop of the Gs-coupled jellyfish opsin. Acropsin 4 categorized as another group light-dependently induced intracellular Ca2+ increases but not cAMP changes. Our results uncovered that the Acropora coral possesses multiple opsins coupling two distinct cascades, cyclic nucleotide and Ca2+signaling light-dependently.


Assuntos
Antozoários , Opsinas , Animais , Opsinas/metabolismo , Antozoários/genética , Antozoários/metabolismo , Opsinas de Bastonetes/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Filogenia
2.
J Biol Chem ; 296: 100475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33640452

RESUMO

Olfactory receptors (ORs), the largest family of G protein-coupled receptors, are expressed in the nasal epithelium where they mediate the sense of smell. However, ORs are also found in other non-nasal tissues, but the role of these ectopic ORs in cell signaling, proliferation, and survival is not well understood. Here, using an inducible expression system in the lymph node carcinoma of the prostate (LNCaP) cell line, we investigated two ectopic ORs, OR51E1 and OR51E2, which have been shown to be upregulated in prostate cancer. We found that, consistent with previous studies, OR51E1 stimulated adenylyl cyclase in response to treatment by short-chain to medium-chain organic acids (C3-C9) but not by acetate. OR51E2 responded to acetate and propionate but not to the longer chain organic acids. Stimulation of LNCaP cells with butyrate inhibited their growth, and the knockdown of the endogenous OR51E1 negated this cytostatic effect. Most significantly, overexpression of OR51E1 or OR51E2 suppressed LNCaP cell proliferation. Overexpression of another ectopic OR OR2AT4, ß2-adrenergic receptor, or treatment of cells with forskolin did not suppress cell proliferation, indicating that a rise in cAMP is not sufficient to induce cytostasis. Overexpression of OR51E1 caused an upregulation of cytostatic and cell death markers including p27, p21, and p53, strongly increased annexin V staining, and stimulated extracellular signal-regulated protein kinases 1 and 2. Overexpression and/or activation of OR51E1 did not affect human embryonic kidney 293 cell proliferation, indicating that cytotoxicity of OR51E1/OR51E2 is specific for LNCaP cells. Together, our results further our understanding of prostate cancer etiology and suggest that ectopic ORs may be useful therapeutic targets.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Morte Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Expressão Ectópica do Gene/genética , Células HEK293 , Humanos , Masculino , Próstata/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Transdução de Sinais/efeitos dos fármacos
3.
J Biol Chem ; 295(50): 16929-16930, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33310745

RESUMO

The heterotrimeric G proteins are known to have a variety of downstream effectors, but Gs was long thought to be specifically coupled to adenylyl cyclases. A new study indicates that activated Gs can also directly interact with a guanine nucleotide exchange factor for Rho family small GTPases, PDZ-RhoGEF. This novel interaction mediates activation of the small G protein Cdc42 by Gs-coupled GPCRs, inducing cytoskeletal rearrangements and formation of filopodia-like structures. Furthermore, overexpression of a minimal PDZ-RhoGEF fragment can down-regulate cAMP signaling, suggesting that this effector competes with canonical signaling. This first demonstration that the Gαs subfamily regulates activity of Rho GTPases extends our understanding of Gαs activity and establishes RhoGEF coupling as a universal Gα function.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Transdução de Sinais , Citoesqueleto/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas rho de Ligação ao GTP/metabolismo
4.
J Biol Chem ; 295(21): 7213-7223, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32229584

RESUMO

G protein-coupled receptors (GPCRs) are important modulators of glucose-stimulated insulin secretion, essential for maintaining energy homeostasis. Here we investigated the role of Gß5-R7, a protein complex consisting of the atypical G protein ß subunit Gß5 and a regulator of G protein signaling of the R7 family. Using the mouse insulinoma MIN6 cell line and pancreatic islets, we investigated the effects of G protein subunit ß 5 (Gnb5) knockout on insulin secretion. Consistent with previous work, Gnb5 knockout diminished insulin secretion evoked by the muscarinic cholinergic agonist Oxo-M. We found that the Gnb5 knockout also attenuated the activity of other GPCR agonists, including ADP, arginine vasopressin, glucagon-like peptide 1, and forskolin, and, surprisingly, the response to high glucose. Experiments with MIN6 cells cultured at different densities provided evidence that Gnb5 knockout eliminated the stimulatory effect of cell adhesion on Oxo-M-stimulated glucose-stimulated insulin secretion; this effect likely involved the adhesion GPCR GPR56. Gnb5 knockout did not influence cortical actin depolymerization but affected protein kinase C activity and the 14-3-3ϵ substrate. Importantly, Gnb5-/- islets or MIN6 cells had normal total insulin content and released normal insulin amounts in response to K+-evoked membrane depolarization. These results indicate that Gß5-R7 plays a role in the insulin secretory pathway downstream of signaling via all GPCRs and glucose. We propose that the Gß5-R7 complex regulates a phosphorylation event participating in the vesicular trafficking pathway downstream of G protein signaling and actin depolymerization but upstream of insulin granule release.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Glucose/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Linhagem Celular Tumoral , Subunidades beta da Proteína de Ligação ao GTP/genética , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética
5.
Front Mol Neurosci ; 12: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930743

RESUMO

Mechanical stress and hypoxia during episodes of ocular hypertension (OHT) trigger glial activation and neuroinflammation in the retina. Glial activation and release of pro-inflammatory cytokines TNFα and IL-1ß, complement, and other danger factors was shown to facilitate injury and loss of retinal ganglion cells (RGCs) that send visual information to the brain. However, cellular events linking neuroinflammation and neurotoxicity remain poorly characterized. Several pro-inflammatory and danger signaling pathways, including P2X7 receptors and Pannexin1 (Panx1) channels, are known to activate inflammasome caspases that proteolytically activate gasdermin D channel-formation to export IL-1 cytokines and/or induce pyroptosis. In this work, we used molecular and genetic approaches to map and characterize inflammasome complexes and detect pyroptosis in the OHT-injured retina. Acute activation of distinct inflammasome complexes containing NLRP1, NLRP3 and Aim2 sensor proteins was detected in RGCs, retinal astrocytes and Muller glia of the OHT-challenged retina. Inflammasome-mediated activation of caspases-1 and release of mature IL-1ß were detected within 6 h and peaked at 12-24 h after OHT injury. These coincided with the induction of pyroptotic pore protein gasdermin D in neurons and glia in the ganglion cell layer (GCL) and inner nuclear layer (INL). The OHT-induced release of cytokines and RGC death were significantly decreased in the retinas of Casp1-/-Casp4(11)del, Panx1-/- and in Wild-type (WT) mice treated with the Panx1 inhibitor probenecid. Our results showed a complex spatio-temporal pattern of innate immune responses in the retina. Furthermore, they indicate an active contribution of neuronal NLRP1/NLRP3 inflammasomes and the pro-pyroptotic gasdermin D pathway to pathophysiology of the OHT injury. These results support the feasibility of inflammasome modulation for neuroprotection in OHT-injured retinas.

6.
Sci Rep ; 8(1): 5797, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643381

RESUMO

Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play a key role in purinergic signaling in the nervous system in both normal and pathological conditions. In the retina, particularly high levels of Panx1 are found in retinal ganglion cells (RGCs), but the normal physiological function in these cells remains unclear. In this study, we used patch clamp recordings in the intact inner retina to show that evoked currents characteristic of Panx1 channel activity were detected only in RGCs, particularly in the OFF-type cells. The analysis of pattern electroretinogram (PERG) recordings indicated that Panx1 contributes to the electrical output of the retina. Consistently, PERG amplitudes were significantly impaired in the eyes with targeted ablation of the Panx1 gene in RGCs. Under ocular hypertension and ischemic conditions, however, high Panx1 activity permeated cell membranes and facilitated the selective loss of RGCs or stably transfected Neuro2A cells. Our results show that high expression of the Panx1 channel in RGCs is essential for visual function in the inner retina but makes these cells highly sensitive to mechanical and ischemic stresses. These findings are relevant to the pathophysiology of retinal disorders induced by increased intraocular pressure, such as glaucoma.


Assuntos
Conexinas/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/fisiologia , Animais , Eletrorretinografia , Potenciais Evocados Visuais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp
7.
Mol Pharmacol ; 92(5): 601-612, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893976

RESUMO

Pilocarpine is a prototypical drug used to treat glaucoma and dry mouth and is classified as either a full or partial muscarinic agonist. Here, we report several unexpected results pertaining to its interaction with muscarinic M3 receptor (M3R). We found that pilocarpine was 1000 times less potent in stimulating mouse-eye pupil constriction than muscarinic agonists oxotremorin-M (Oxo-M) or carbachol (CCh), although all three ligands have similar Kd values for M3R. In contrast to CCh or Oxo-M, pilocarpine does not induce Ca2+ mobilization via endogenous M3R in human embryonic kidney cell line 293T (HEK293T) or mouse insulinoma (MIN6) cells. Pilocarpine also fails to stimulate insulin secretion and, instead, antagonizes the insulinotropic effect of Oxo-M and CCh-induced Ca2+ upregulation; however, in HEK293T or Chinese hamster ovary-K1 cells overexpressing M3R, pilocarpine induces Ca2+ transients like those recorded with another cognate G protein-coupled muscarinic receptor, M1R. Stimulation of cells overexpressing M1R or M3R with CCh resulted in a similar reduction in phosphatidylinositol 4,5-bisphosphate (PIP2). In contrast to CCh, pilocarpine stimulated PIP2 hydrolysis only in cells overexpressing M1R but not M3R. Moreover, pilocarpine blocked CCh-stimulated PIP2 hydrolysis in M3R-overexpressing cells, thus, it acted as an antagonist. Pilocarpine activates extracellular regulated kinase 1/2 in MIN6 cells. The stimulatory effect on extracellular regulated kinase (ERK1/2) was blocked by the Src family kinase inhibitor PP2, indicating that the action of pilocarpine on endogenous M3R is biased toward ß-arrestin. Taken together, our findings show that pilocarpine can act as either an agonist or antagonist of M3R, depending on the cell type, expression level, and signaling pathway downstream of this receptor.


Assuntos
Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inibidores , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Muscarínicos/metabolismo , Antagonistas Muscarínicos/metabolismo , Pilocarpina/metabolismo , Receptor Muscarínico M3/metabolismo
8.
FASEB J ; 31(11): 4734-4744, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28687610

RESUMO

In pancreatic ß cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G-protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in ß cells remains largely unknown. R7 subfamily RGS proteins are stabilized by the G-protein subunit Gß5, such that the knockout of the Gnb5 gene results in degradation of all R7 subunits. We found that Gnb5 knockout in mice or in the insulin-secreting MIN6 cell line almost completely eliminates insulinotropic activity of M3R. Moreover, overexpression of Gß5-RGS7 strongly promotes M3R-stimulated insulin secretion. Examination of this noncanonical mechanism in Gnb5-/- MIN6 cells showed that cAMP, diacylglycerol, or Ca2+ levels were not significantly affected. There was no reduction in the amplitude of free Ca2+ responses in islets from the Gnb5-/- mice, but the frequency of Ca2+ oscillations induced by cholinergic agonist was lowered by more than 30%. Ablation of Gnb5 impaired M3R-stimulated phosphorylation of ERK1/2. Stimulation of the ERK pathway in Gnb5-/- cells by epidermal growth factor restored M3R-stimulated insulin release to near normal levels. Identification of the novel role of Gß5-R7 in insulin secretion may lead to a new therapeutic approach for improving pancreatic ß-cell function.-Wang, Q., Pronin, A. N., Levay, K., Almaca, J., Fornoni, A., Caicedo, A., Slepak, V. Z. Regulator of G-protein signaling Gß5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion.


Assuntos
Sinalização do Cálcio/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas RGS/metabolismo , Receptor Muscarínico M3/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , AMP Cíclico/genética , AMP Cíclico/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/fisiologia , Proteínas RGS/genética , Receptor Muscarínico M3/genética
10.
Cell Rep ; 17(12): 3281-3291, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009296

RESUMO

In the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration. Serotonin secretion from beta cells decreases cyclic AMP (cAMP) levels in neighboring alpha cells via 5-HT1F receptors and inhibits glucagon secretion. Without serotonergic input, alpha cells lose their ability to regulate glucagon secretion in response to changes in glucose concentration, suggesting that diminished serotonergic control of alpha cells can cause glucose blindness and the uncontrolled glucagon secretion associated with diabetes. Supporting this model, pharmacological activation of 5-HT1F receptors reduces glucagon secretion and has hypoglycemic effects in diabetic mice. Thus, modulation of serotonin signaling in the islet represents a drug intervention opportunity.


Assuntos
Diabetes Mellitus/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Animais , AMP Cíclico/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/patologia , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Serotonina/biossíntese , Transdução de Sinais , Receptor 5-HT1F de Serotonina
11.
J Cell Sci ; 129(19): 3533-3540, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27609838

RESUMO

Tescalcin (TESC, also known as calcineurin-homologous protein 3, CHP3) is a 24-kDa EF-hand Ca2+-binding protein that has recently emerged as a regulator of cell differentiation and growth. The TESC gene has also been linked to human brain abnormalities, and high expression of tescalcin has been found in several cancers. The expression level of tescalcin changes dramatically during development and upon signal-induced cell differentiation. Recent studies have shown that tescalcin is not only subjected to up- or down-regulation, but also has an active role in pathways that drive cell growth and differentiation programs. At the molecular level, there is compelling experimental evidence showing that tescalcin can directly interact with and regulate the activities of the Na+/H+ exchanger NHE1, subunit 4 of the COP9 signalosome (CSN4) and protein kinase glycogen-synthase kinase 3 (GSK3). In hematopoetic precursor cells, tescalcin has been shown to couple activation of the extracellular signal-regulated kinase (ERK) cascade to the expression of transcription factors that control cell differentiation. The purpose of this Commentary is to summarize recent efforts that have served to characterize the biochemical, genetic and physiological attributes of tescalcin, and its unique role in the regulation of various cellular functions.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Motivos EF Hand , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/química , Diferenciação Celular/genética , Proliferação de Células , Sistema Nervoso Central/anormalidades , Sistema Nervoso Central/metabolismo , Humanos
12.
J Biol Chem ; 291(17): 9133-47, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26895961

RESUMO

RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gß subunit, Gß5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gß5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gß5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners.


Assuntos
Proteínas de Transporte/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Multimerização Proteica/fisiologia , Proteínas RGS/metabolismo , Animais , Proteínas de Transporte/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Proteínas RGS/genética
13.
ISME J ; 10(1): 240-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25978546

RESUMO

Archaea domain is comprised of many versatile taxa that often colonize extreme habitats. Here, we report the discovery of strictly anaerobic extremely halophilic euryarchaeon, capable of obtaining energy by dissimilatory reduction of elemental sulfur using acetate as the only electron donor and forming sulfide and CO2 as the only products. This type of respiration has never been observed in hypersaline anoxic habitats and is the first example of such metabolic capability in the entire Archaea domain. We isolated and cultivated these unusual organisms, selecting one representative strain, HSR2, for detailed characterization. Our studies including physiological tests, genome sequencing, gene expression, metabolomics and [(14)C]-bicarbonate assimilation assays revealed that HSR2 oxidized acetate completely via the tricarboxylic acid cycle. Anabolic assimilation of acetate occurred via activated glyoxylate bypass and anaplerotic carboxylation. HSR2 possessed sulfurtransferase and an array of membrane-bound polysulfide reductase genes, all of which were expressed during the growth. Our findings suggest the biogeochemical contribution of haloarchaea in hypersaline anoxic environments must be reconsidered.


Assuntos
Acetatos/metabolismo , Archaea/metabolismo , Enxofre/metabolismo , Anaerobiose , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Proteínas Arqueais/metabolismo , Oxirredução , Oxirredutases/metabolismo , Sulfetos/metabolismo
14.
Biochemistry ; 54(4): 1077-88, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25551629

RESUMO

The muscarinic M3 receptor (M3R) is a Gq-coupled receptor and is known to interact with many intracellular regulatory proteins. One of these molecules is Gß5-RGS7, the permanently associated heterodimer of G protein ß-subunit Gß5 and RGS7, a regulator of G protein signaling. Gß5-RGS7 can attenuate M3R-stimulated release of Ca(2+) from intracellular stores or enhance the influx of Ca(2+) across the plasma membrane. Here we show that deletion of amino acids 304-345 from the central portion of the i3 loop renders M3R insensitive to regulation by Gß5-RGS7. In addition to the i3 loop, interaction of M3R with Gß5-RGS7 requires helix 8. According to circular dichroism spectroscopy, the peptide corresponding to amino acids 548-567 in the C-terminus of M3R assumes an α-helical conformation. Substitution of Thr553 and Leu558 with Pro residues disrupts this α-helix and abolished binding to Gß5-RGS7. Introduction of the double Pro substitution into full-length M3R (M3R(TP/LP)) prevents trafficking of the receptor to the cell surface. Using atropine or other antagonists as pharmacologic chaperones, we were able to increase the level of surface expression of the TP/LP mutant to levels comparable to that of wild-type M3R. However, M3R-stimulated calcium signaling is still severely compromised. These results show that the interaction of M3R with Gß5-RGS7 requires helix 8 and the central portion of the i3 loop.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Receptor Muscarínico M3/química , Receptor Muscarínico M3/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Colinérgicos/farmacologia , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Dados de Sequência Molecular , Receptor Muscarínico M3/agonistas
15.
PLoS One ; 9(4): e96435, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24789354

RESUMO

PURPOSE: To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. METHODS: Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. RESULTS: We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. CONCLUSIONS: Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment.


Assuntos
Córnea/metabolismo , RNA Mensageiro/genética , Receptores Odorantes/genética , Olfato , Animais , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/isolamento & purificação , Transdução de Sinais
16.
Mol Pharmacol ; 85(5): 758-68, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24586057

RESUMO

The G protein ß subunit Gß5 uniquely forms heterodimers with R7 family regulators of G protein signaling (RGS) proteins (RGS6, RGS7, RGS9, and RGS11) instead of Gγ. Although the Gß5-RGS7 complex attenuates Ca(2+) signaling mediated by the muscarinic M3 receptor (M3R), the route of Ca(2+) entry (i.e., release from intracellular stores and/or influx across the plasma membrane) is unknown. Here, we show that, in addition to suppressing carbachol-stimulated Ca(2+) release, Gß5-RGS7 enhanced Ca(2+) influx. This novel effect of Gß5-RGS7 was blocked by nifedipine and 2-aminoethoxydiphenyl borate. Experiments with pertussis toxin, an RGS domain-deficient mutant of RGS7, and UBO-QIC {L-threonine,(3R)-N-acetyl-3-hydroxy-L-leucyl-(aR)-a-hydroxybenzenepropanoyl-2,3-idehydro-N-methylalanyl-L-alanyl-N-methyl-L-alanyl-(3R)-3-[[(2S,3R)-3-hydroxy-4- methyl-1-oxo-2-[(1-oxopropyl)amino]pentyl]oxy]-L-leucyl-N,O-dimethyl-,(7→1)-lactone (9CI)}, a novel inhibitor of Gq, showed that Gß5-RGS7 modulated a Gq-mediated pathway. These studies indicate that Gß5-RGS7, independent of RGS7 GTPase-accelerating protein activity, couples M3R to a nifedipine-sensitive Ca(2+) channel. We also compared the action of Gß5-RGS7 on M3R-induced Ca(2+) influx and release elicited by different muscarinic agonists. Responses to Oxo-M [oxotremorine methiodide N,N,N,-trimethyl-4-(2-oxo-1-pyrrolidinyl)-2-butyn-1-ammonium iodide] were insensitive to Gß5-RGS7. Pilocarpine responses consisted of a large release and modest influx components, of which the former was strongly inhibited whereas the latter was insensitive to Gß5-RGS7. McN-A-343 [(4-hydroxy-2-butynyl)-1-trimethylammonium-3-chlorocarbanilate chloride] was the only compound whose total Ca(2+) response was enhanced by Gß5-RGS7, attributed to, in part, by the relatively small Ca(2+) release this partial agonist stimulated. Together, these results show that distinct agonists not only have differential M3R functional selectivity, but also confer specific sensitivity to the Gß5-RGS7 complex.


Assuntos
Cálcio/metabolismo , Agonismo Parcial de Drogas , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Proteínas RGS/metabolismo , Receptor Muscarínico M3/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Subunidades beta da Proteína de Ligação ao GTP/agonistas , Proteínas RGS/agonistas , Receptor Muscarínico M3/agonistas
17.
J Cell Sci ; 127(Pt 11): 2448-59, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24659803

RESUMO

The Ca(2+)-binding protein tescalcin is known to be involved in hematopoietic cell differentiation; however, this mechanism is poorly understood. Here, we identify CSN4 (subunit 4 of the COP9 signalosome) as a novel binding partner of tescalcin. The COP9 signalosome (CSN) is a multiprotein complex that is essential for development in all eukaryotes. This interaction is selective, Ca(2+)-dependent and involves the PCI domain of CSN4 subunit. We then investigated tescalcin and CSN activity in human erythroleukemia HEL and promyelocytic leukemia K562 cells and find that phorbol 12-myristate 13-acetate (PMA)-induced differentiation, resulting in the upregulation of tescalcin, coincides with reduced deneddylation of cullin-1 (Cul1) and stabilization of p27(Kip1) - molecular events that are associated with CSN activity. The knockdown of tescalcin led to an increase in Cul1 deneddylation, expression of F-box protein Skp2 and the transcription factor c-Jun, whereas the levels of cell cycle regulators p27(Kip1) and p53 decreased. These effects are consistent with the hypothesis that tescalcin might play a role as a negative regulator of CSN activity towards Cul1 in the process of induced cell differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Culina/metabolismo , Hematopoese , Complexos Multiproteicos/metabolismo , Complexo do Signalossomo COP9 , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação da Expressão Gênica/genética , Hematopoese/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células K562 , Ligação Proteica/genética , RNA Interferente Pequeno/genética , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Front Physiol ; 5: 23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24575045

RESUMO

Pannexin1 (Panx1) forms non-selective membrane channels, structurally similar to gap junction hemichannels, and are permeable to ions, nucleotides, and other small molecules below 900 Da. Panx1 activity has been implicated in paracrine signaling and inflammasome regulation. Recent studies in different animal models showed that overactivation of Panx1 correlates with a selective demise of several types of neurons, including retinal ganglion cells, brain pyramidal, and enteric neurons. The list of Panx1 activators includes extracellular ATP, glutamate, high K(+), Zn(2+), fibroblast growth factors (FGFs),pro-inflammatory cytokines, and elevation of intracellular Ca(2+). Most of these molecules are released following mechanical, ischemic, or inflammatory injury of the CNS, and rapidly activate the Panx1 channel. Prolonged opening of Panx1 channel induced by these "danger signals" triggers a cascade of neurotoxic events capable of killing cells. The most vulnerable cell type are neurons that express high levels of Panx1. Experimental evidence suggests that Panx1 channels mediate at least two distinct neurotoxic processes: increased permeability of the plasma membrane and activation of the inflammasome in neurons and glia. Importantly, both pharmacological and genetic inactivation of Panx1 suppresses both these processes, providing a marked protection in several disease and injury models. These findings indicate that external danger signals generated after diverse types of injuries converge to activate Panx1. In this review we discuss molecular mechanisms associated with Panx1 toxicity and the crosstalk between different pathways.

19.
Curr Eye Res ; 39(2): 105-19, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24144321

RESUMO

PURPOSE OF THE STUDY: Many blinding diseases of the inner retina are associated with degeneration and loss of retinal ganglion cells (RGCs). Recent evidence implicates several new signaling mechanisms as causal agents associated with RGC injury and remodeling of the optic nerve head. Ion channels such as Transient receptor potential vanilloid isoform 4 (TRPV4), pannexin-1 (Panx1) and P2X7 receptor are localized to RGCs and act as potential sensors and effectors of mechanical strain, ischemia and inflammatory responses. Under normal conditions, TRPV4 may function as an osmosensor and a polymodal molecular integrator of diverse mechanical and chemical stimuli, whereas P2X7R and Panx1 respond to stretch- and/or swelling-induced adenosine triphosphate release from neurons and glia. Ca(2+) influx, induced by stimulation of mechanosensitive ion channels in glaucoma, is proposed to influence dendritic and axonal remodeling that may lead to RGC death while (at least initially) sparing other classes of retinal neuron. The secondary phase of the retinal glaucoma response is associated with microglial activation and an inflammatory response involving Toll-like receptors (TLRs), cluster of differentiation 3 (CD3) immune recognition molecules associated with the T-cell antigen receptor, complement molecules and cell type-specific release of neuroactive cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß). The retinal response to mechanical stress thus involves a diversity of signaling pathways that sense and transduce mechanical strain and orchestrate both protective and destructive secondary responses. CONCLUSIONS: Mechanistic understanding of the interaction between pressure-dependent and independent pathways is only beginning to emerge. This review focuses on the molecular basis of mechanical strain transduction as a primary mechanism that can damage RGCs. The damage occurs through Ca(2+)-dependent cellular remodeling and is associated with parallel activation of secondary ischemic and inflammatory signaling pathways. Molecules that mediate these mechanosensory and immune responses represent plausible targets for protecting ganglion cells in glaucoma, optic neuritis and retinal ischemia.


Assuntos
Glaucoma/fisiopatologia , Inflamação/fisiopatologia , Mecanotransdução Celular/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Células Ganglionares da Retina/fisiologia , Transdução de Sinais
20.
Sci Rep ; 3: 3554, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24352146

RESUMO

Deep-sea hypersaline anoxic lakes (DHALs) of the Eastern Mediterranean represent some of the most hostile environments on our planet. We investigated microbial life in the recently discovered Lake Medee, the largest DHAL found to-date. Medee has two unique features: a complex geobiochemical stratification and an absence of chemolithoautotrophic Epsilonproteobacteria, which usually play the primary role in dark bicarbonate assimilation in DHALs interfaces. Presumably because of these features, Medee is less productive and exhibits reduced diversity of autochthonous prokaryotes in its interior. Indeed, the brine community almost exclusively consists of the members of euryarchaeal MSBL1 and bacterial KB1 candidate divisions. Our experiments utilizing cultivation and [(14)C]-assimilation, showed that these organisms at least partially rely on reductive cleavage of osmoprotectant glycine betaine and are engaged in trophic cooperation. These findings provide novel insights into how prokaryotic communities can adapt to salt-saturated conditions and sustain active metabolism at the thermodynamic edge of life.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Halobacteriales , Lagos/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Betaína/metabolismo , Betaína/farmacologia , Bicarbonatos/química , Biodiversidade , Ecossistema , Epsilonproteobacteria , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Halobacteriales/classificação , Halobacteriales/genética , Halobacteriales/metabolismo , Região do Mediterrâneo , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Solução Salina Hipertônica , Tolerância ao Sal , Água do Mar/química , Cloreto de Sódio , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA