Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(7): e1010695, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35788221

RESUMO

Chikungunya virus (CHIKV) is an emerging/re-emerging mosquito-borne pathogen responsible for explosive epidemics of febrile illness characterized by debilitating polyarthralgia and the risk of lethal infection among the most severe cases. Despite the public health risk posed by CHIKV, no vaccine is currently available. Using a site-directed hydrogen peroxide-based inactivation approach, we developed a new CHIKV vaccine, HydroVax-CHIKV. This vaccine technology was compared to other common virus inactivation approaches including ß-propiolactone (BPL), formaldehyde, heat, and ultraviolet (UV) irradiation. Heat, UV, and BPL were efficient at inactivating CHIKV-181/25 but caused substantial damage to neutralizing epitopes and failed to induce high-titer neutralizing antibodies in vaccinated mice. HydroVax-CHIKV and formaldehyde-inactivated CHIKV retained intact neutralizing epitopes similar to live virus controls but the HydroVax-CHIKV approach demonstrated a more rapid rate of virus inactivation. HydroVax-CHIKV vaccination induced high neutralizing responses to homologous and heterologous CHIKV clades as well as to other alphaviruses including Mayaro virus, O'nyong'nyong virus, and Una virus. Following heterologous infection with CHIKV-SL15649, HydroVax-CHIKV-immunized mice were protected against viremia, CHIKV-associated arthritic disease, and lethal CHIKV infection by an antibody-dependent mechanism. In contrast, animals vaccinated with Heat- or UV-inactivated virus showed no protection against viremia in addition to demonstrating significantly exacerbated CD4+ T cell-mediated footpad swelling after CHIKV infection. Together, these results demonstrate the risks associated with using suboptimal inactivation methods that fail to elicit protective neutralizing antibody responses and show that HydroVax-CHIKV represents a promising new vaccine candidate for prevention of CHIKV-associated disease.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Febre de Chikungunya/prevenção & controle , Epitopos , Formaldeído , Camundongos , Viremia
2.
Vaccine ; 37(30): 4222-4230, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-30661836

RESUMO

BACKGROUND: West Nile virus (WNV) is the most common mosquito-borne infection in the United States. HydroVax-001 WNV is a hydrogen peroxide inactivated, whole virion (WNV-Kunjin strain) vaccine adjuvanted with aluminum hydroxide. METHODS: We performed a phase 1, randomized, placebo-controlled, double-blind (within dosing group), dose escalation clinical trial of the HydroVax-001 WNV vaccine administered via intramuscular injection. This trial evaluated 1 mcg and 4 mcg dosages of HydroVax-001 WNV vaccine given intramuscularly on day 1 and day 29 in healthy adults. The two dosing groups of HydroVax-001 were enrolled sequentially and each group consisted of 20 individuals who received HydroVax-001 and 5 who received placebo. Safety was assessed at all study days (days 1, 2, 4 and 15 post dose 1, and days 1, 2, 4, 15, 29, 57, 180 and 365 post dose 2), and reactogenicity was assessed for 14 days after administration of each dose. Immunogenicity was measured by WNV-specific plaque reduction neutralization tests (PRNT50) in the presence or absence of added complement or by WNV-specific enzyme-linked immunosorbent assays (ELISA). RESULTS: HydroVax-001 was safe and well-tolerated as there were no serious adverse events or concerning safety signals. At the 1 mcg dose, HydroVax-001 was not immunogenic by PRNT50 but elicited up to 41% seroconversion by WNV-specific ELISA in the per-protocol population (PP) after the second dose. At the 4 mcg dose, HydroVax-001 elicited neutralizing antibody responses in 31% of the PP following the second dose. In the presence of added complement, PRNT50 seroconversion rates increased to 50%, and 75% seroconversion was observed by WNV-specific ELISA. CONCLUSIONS: The HydroVax-001 WNV vaccine was found to be modestly immunogenic and well-tolerated at all dose levels.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra o Vírus do Nilo Ocidental/uso terapêutico , Vírus do Nilo Ocidental/patogenicidade , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Vacinas de Produtos Inativados/uso terapêutico , Vírus do Nilo Ocidental/imunologia , Adulto Jovem
3.
Vaccine ; 35(2): 283-292, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27919629

RESUMO

West Nile virus (WNV) is a mosquito-transmitted pathogen with a wide geographical range that can lead to long-term disability and death in some cases. Despite the public health risk posed by WNV, including an estimated 3 million infections in the United States alone, no vaccine is available for use in humans. Here, we present a scaled manufacturing approach for production of a hydrogen peroxide-inactivated whole virion WNV vaccine, termed HydroVax-001WNV. Vaccination resulted in robust virus-specific neutralizing antibody responses and protection against WNV-associated mortality in mice or viremia in rhesus macaques (RM). A GLP-compliant toxicology study performed in rats demonstrated an excellent safety profile with clinical findings limited to minor and transient irritation at the injection site. An in vitro relative potency (IVRP) assay was developed and shown to correlate with in vivo responses following forced degradation studies. Long-term in vivo potency comparisons between the intended storage condition (2-8°C) and a thermally stressed condition (40±2°C) demonstrated no loss in vaccine efficacy or protective immunity over a 6-month span of time. Together, the positive pre-clinical findings regarding immunogenicity, safety, and stability indicate that HydroVax-001WNV is a promising vaccine candidate.


Assuntos
Febre do Nilo Ocidental/prevenção & controle , Vacinas contra o Vírus do Nilo Ocidental/imunologia , Animais , Anti-Infecciosos Locais/metabolismo , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Temperatura Alta , Peróxido de Hidrogênio/metabolismo , Macaca mulatta , Masculino , Camundongos Endogâmicos BALB C , Ratos Sprague-Dawley , Análise de Sobrevida , Estados Unidos , Potência de Vacina , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/isolamento & purificação , Viremia/prevenção & controle , Vacinas contra o Vírus do Nilo Ocidental/administração & dosagem , Vacinas contra o Vírus do Nilo Ocidental/efeitos adversos , Vacinas contra o Vírus do Nilo Ocidental/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA