Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Chemosphere ; 229: 22-31, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31071516

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a group of environmentally persistent, man-made chemicals used in many industrial products and everyday consumer items. Of the plant proteins trialled, those of hemp (Cannabis sativa L.) were found to be far superior for PFAS removal than the next best protein, soy. The use of hemp plant proteins as a possible pump-and-treat solution to PFAS remediation from groundwater has been successfully demonstrated with very good removals (>98%) of the main contaminants of PFOS and PFHxS in approximately 1 h of contact time, with salinity enhancing removal of short chain PFAS. Changes to the secondary structure of hemp proteins was found using FTIR spectroscopy analysis and calculated based on the integrated areas of the amide I component bands. The amount of ß-turns increased from ∼9.3% (control) to 44.1% (undiluted groundwater); with a decrease in random coils (25.6-8.6%); α-helix (19.3-8.6%) and ß-sheets (38.8-23.1%). These changes indicate that hemp proteins partially unfold during the reaction with PFAS with other FTIR evidence suggesting sorption at hydrophobic sites of the protein as well as with the side chains of the amino acids aspartic and glutamic acid. The absence of these side chains in soy protein, as evidenced from FTIR and amino acid analysis, being part of the reason why soy removed less (approx. half) of the Σ(PFHxS + PFOS) load when compared to hemp. The findings reported here will lead to new, environmentally friendly methods for PFAS remediation.


Assuntos
Cannabis/química , Fluorocarbonos/efeitos adversos , Água Subterrânea/química , Monitoramento Ambiental/métodos
3.
Water Res ; 130: 300-311, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306195

RESUMO

The kinetics of fluoride sorption by calcite in the presence of metal ions (Co, Mn, Cd and Ba) have been investigated and modelled using the intra-particle diffusion (IPD), pseudo-second order (PSO), and the Hill 4 and Hill 5 kinetic models. Model comparison using the Akaike Information Criterion (AIC), the Schwarz Bayseian Information Criterion (BIC) and the Bayes Factor allows direct comparison of model results irrespective of the number of model parameters. Information Criterion results indicate "very strong" evidence that the Hill 5 model was the best fitting model for all observed data due to its ability to fit sigmoidal data, with confidence contour analysis showing the model parameters were well constrained by the data. Kinetic results were used to determine the thickness of a calcite permeable reactive barrier required to achieve up to 99.9% fluoride removal at a groundwater flow of 0.1 m.day-1. Fluoride removal half-life (t0.5) values were found to increase in the order Ba ≈ stonedust (a 99% pure natural calcite) < Cd < Co < Mn. A barrier width of 0.97 ± 0.02 m was found to be required for the fluoride/calcite (stonedust) only system when using no factor of safety, whilst in the presence of Mn and Co, the width increased to 2.76 ± 0.28 and 19.83 ± 0.37 m respectively. In comparison, the PSO model predicted a required barrier thickness of ∼46.0, 62.6 & 50.3 m respectively for the fluoride/calcite, Mn and Co systems under the same conditions.


Assuntos
Carbonato de Cálcio/química , Fluoretos/química , Metais Pesados/química , Modelos Teóricos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Teorema de Bayes , Difusão , Água Subterrânea/química , Cinética
4.
J Contam Hydrol ; 177-178: 136-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909159

RESUMO

Industrial wastewaters often consist of a complex chemical cocktail with treatment of target contaminants complicated by adverse chemical reactions. The impact of metal ions (Cd(2+), Ba(2+) and Mn(2+)) on the kinetics of fluoride removal from solution by natural zeolite was investigated. In order to better understand the kinetics, the pseudo-second order (PSO), Hill (Hill 4 and Hill 5) and intra-particle diffusion (IPD) models were applied. Model fitting was compared using the Akaike Information Criterion (AIC) and the Schwarz Bayesian Information Criterion (BIC). The Hill models (Hill 4 and Hill 5) were found to be superior in describing the fluoride removal processes due to the sigmoidal nature of the kinetics. Results indicate that the presence of Mn (100 mg L(-1)) and Cd (100 mg L(-1)) respectively increases the rate of fluoride sorption by a factor of ~28.3 and ~10.9, the maximum sorption capacity is increased by ~2.2 and ~1.7. The presence of Ba (100 mg L(-1)) initially inhibited fluoride removal and very poor fits were obtained for all models. Fitting was best described with a biphasic sigmoidal model with the degree of inhibition decreasing with increasing temperature suggesting that at least two processes are involved with fluoride sorption onto natural zeolite in the presence of Ba.


Assuntos
Bário/química , Cádmio/química , Fluoretos/química , Manganês/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Zeolitas/química , Difusão , Hidrologia/métodos , Cinética , Modelos Teóricos , Soluções/química , Temperatura , Águas Residuárias/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-25768495

RESUMO

We investigate numerically the mechanisms governing horizontal dragging of a rigid cylinder buried inside granular matter, with particular emphasis on enumerating drag and lift forces that resist cylinder movement. The recently proposed particle finite element method is employed, which combines the robustness of classical continuum mechanics formulations in terms of representing complex aspects of the material constitutive behavior, with the effectiveness of discrete element methods in simulating ultralarge deformation problems. The investigation focuses on the effect of embedment depth, cylinder roughness, granular matter macromechanical properties, and of the magnitude of the cylinder's horizontal displacement on the amplitude of the resisting forces, which are discussed in light of published experimental data. Interpretation of the results provides insight on how the material flow around the cylinder affects the developing resistance, and a mechanism is proposed to describe the development of a steady-state drag force at large horizontal movements of the cylinder.

6.
J Contam Hydrol ; 95(3-4): 110-20, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-17913284

RESUMO

The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model results show that approximately 99% of 2300 mg/L fluoride can be removed when CO2 is injected directly into the barrier. This can be compared to approximately 30-50% removal when the influent solution is equilibrated with atmospheric CO2 before contact with calcite.


Assuntos
Carbonato de Cálcio/química , Fluoretos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Abastecimento de Água/análise , Dióxido de Carbono/química , Reprodutibilidade dos Testes , Poluentes Químicos da Água/química , Purificação da Água/instrumentação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA