Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell Rep ; 43(1): 113601, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38157297

RESUMO

Apicomplexan parasites possess specialized secretory organelles called rhoptries, micronemes, and dense granules that play a vital role in host infection. In this study, we demonstrate that TgREMIND, a protein found in Toxoplasma gondii, is necessary for the biogenesis of rhoptries and dense granules. TgREMIND contains a Fes-CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain, which binds to membrane phospholipids, as well as a novel uncharacterized domain that we have named REMIND (regulator of membrane-interacting domain). Both the F-BAR domain and the REMIND are crucial for TgREMIND functions. When TgREMIND is depleted, there is a significant decrease in the abundance of dense granules and abnormal transparency of rhoptries, leading to a reduction in protein secretion from these organelles. The absence of TgREMIND inhibits host invasion and parasite dissemination, demonstrating that TgREMIND is essential for the proper function of critical secretory organelles required for successful infection by Toxoplasma.


Assuntos
Parasitos , Toxoplasma , Animais , Toxoplasma/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Organelas/metabolismo , Parasitos/metabolismo , Fosfatidilinositóis/metabolismo
2.
Cell Death Dis ; 10(9): 652, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501416

RESUMO

In prostate carcinogenesis, androgens are known to control the expression of the transient receptor potential melastatin 8 (TRPM8) protein via activation of androgen receptor (AR). Overexpression and/or activity of TRPM8 channel was shown to suppress prostate cancer (PCa) cell migration. Here we report that at certain concentrations androgens facilitate PCa cell migration. We show that underlying mechanism is inhibition of TRPM8 by activated AR which interacts with the channel within lipid rafts microdomains of the plasma membrane. Thus, our study has identified an additional nongenomic mechanism of the TRPM8 channel regulation by androgens that should be taken into account upon the development of novel therapeutic strategies.


Assuntos
Movimento Celular/fisiologia , Microdomínios da Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Canais de Cátion TRPM/metabolismo , Biotinilação , Western Blotting , Movimento Celular/genética , Inativação Gênica/fisiologia , Humanos , Imunoprecipitação , Masculino , Células PC-3 , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Imagem com Lapso de Tempo , Análise Serial de Tecidos
3.
Nanomaterials (Basel) ; 9(7)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247939

RESUMO

Silver nanoparticles (Ag NPs) exhibit antibacterial activity and are extensively used in numerous applications. The aim of this study was to examine the toxic effect of Ag NPs on the marine microalga, Chlorella vulgaris. The microalgae, at the exponential growth phase, were treated with different concentrations of Ag NPs (50 and 100 nm) for 96 h. X-Ray diffraction (XRD) results indicated that the used NPs are single and pure Ag phase with a mean crystallite size of 21 and 32 nm. Ag NPs were found to have a negative effect on viable cell concentration, a variable effect on chlorophyll a concentration, and increased ROS formation. Transmission electron microscopy (TEM) analysis revealed that Ag NPs were present inside the microalgae cells and formed large aggregates in the culture medium. Ag+ ions, in the form of AgNO3, were also assessed at higher concentrations and found to cause inhibitory effects.

4.
Food Chem ; 287: 38-45, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30857714

RESUMO

The current methods used to routinely assess freshness in the fishing industry reflect more a state of spoilage than a state of freshness. Mitochondria, the seat of cellular respiration, undergo profound changes in post mortem tissues. The objective of this study was to demonstrate that mitochondrial activity constitutes a putative early fish freshness marker. The structure of gilthead sea bream (Sparus aurata) muscle tissue was evaluated over time by transmission electron microscopy. Respiration was assessed in mitochondria isolated from sea bream fillets using oxygraphy. Membrane potential (ΔΨm) was determined by fluorescence (Rhodamine 123). Mitochondrial activity of fillets stored at +4 °C was studied for 6 days. Changes in mitochondrial cristae structure appeared from Day 3 highlighting the presence of dense granules. ΔΨm and mitochondrial activity were significantly disrupted in sea bream fillets after 96 h of storage at +4 °C. Mitochondrial activity constituted a reliable and early indicator of fish freshness.


Assuntos
Mitocôndrias , Alimentos Marinhos/análise , Animais , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Dourada/fisiologia , Alimentos Marinhos/normas
5.
Biol Open ; 8(3)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30814066

RESUMO

After entry into the host cell, the intracellular parasite Toxoplasma gondii resides within a membrane-bound compartment, the parasitophorous vacuole (PV). The PV defines an intracellular, parasite-specific niche surrounded by host organelles, including the Golgi apparatus. The mechanism by which T. gondii hijacks the host Golgi and subverts its functions remains unknown. Here, we present evidence that the dense granule protein TgGRA3 interacts with host Golgi, leading to the formation of tubules and the entry of host Golgi material into the PV. Targeted disruption of the TgGRA3 gene delays this engulfment of host Golgi. We also demonstrate that TgGRA3 oligomerizes and binds directly to host Golgi membranes. In addition, we show that TgGRA3 dysregulates anterograde transport in the host cell, thereby revealing one of the mechanisms employed by T. gondii to recruit host organelles and divert their functions. This article has an associated First Person interview with the first author of the paper.

6.
Front Microbiol ; 9: 742, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29720971

RESUMO

A novel mechanism is revealed by which clinical isolates of adherent-invasive Escherichia coli (AIEC) penetrate into the epithelial cell layer, replicate, and establish biofilms in Crohn's disease. AIEC uses the FimH fimbrial adhesin to bind to oligomannose glycans on the surface of host cells. Oligomannose glycans exposed on early apoptotic cells are the preferred binding targets of AIEC, so apoptotic cells serve as potential entry points for bacteria into the epithelial cell layer. Thereafter, the bacteria propagate laterally in the epithelial intercellular spaces. We demonstrate oligomannosylation at two distinct sites of a glycoprotein receptor for AIEC, carcinoembryonic antigen related cell adhesion molecule 6 (CEACAM6 or CD66c), on human intestinal epithelia. After bacterial binding, FimH interacts with CEACAM6, which then clusters. The presence of the highest-affinity epitope for FimH, oligomannose-5, on CEACAM6 is demonstrated using LC-MS/MS. As mannose-dependent infections are abundant, this mechanism might also be used by other adherent-invasive pathogens.

7.
Biochim Biophys Acta Mol Cell Res ; 1865(7): 981-994, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29678654

RESUMO

Calcium (Ca2+) release from the endoplasmic reticulum plays an important role in many cell-fate defining cellular processes. Traditionally, this Ca2+ release was associated with the ER Ca2+ release channels, inositol 1,4,5­triphosphate receptor (IP3R) and ryanodine receptor (RyR). Lately, however, other calcium conductances have been found to be intracellularly localized and to participate in cell fate regulation. Nonetheless, molecular identity and functional properties of the ER Ca2+ release mechanisms associated with multiple diseases, e.g. prostate cancer, remain unknown. Here we identify a new family of transient receptor potential melastatine 8 (TRPM8) channel isoforms as functional ER Ca2+ release channels expressed in mitochondria-associated ER membranes (MAMs). These TRPM8 isoforms exhibit an unconventional structure with 4 transmembrane domains (TMs) instead of 6 TMs characteristic of the TRP channel archetype. We show that these 4TM-TRPM8 isoforms form functional channels in the ER and participate in regulation of the steady-state Ca2+ concentration ([Ca2+]) in mitochondria and the ER. Thus, our study identifies 4TM-TRPM8 isoforms as ER Ca2+ release mechanism distinct from classical Ca2+ release channels.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Neoplasias da Próstata/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Idoso , Processamento Alternativo , Linhagem Celular Tumoral , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/genética , Domínios Proteicos , Canais de Cátion TRPM/química
8.
Int J Food Microbiol ; 266: 289-294, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274485

RESUMO

This study was designed to assess the efficiency of eight extraction methods regarding their ability to release superficial (exogenous) and intracellular (endogenous) DNA from B. cereus spores for subsequent analysis by quantitative PCR (qPCR). B. cereus spore suspensions were subjected to both commercial DNA extraction kits and mechanical DNA extraction methods. The spores were observed by transmission electron microscopy to evaluate any damage caused during extraction. The efficiency of both extraction and purification were assessed using a qPCR assay targeting the bclA gene. Most of the extraction methods assessed, except the passage through the French press or the use of the QIAamp DNA Blood Mini kit without 95°C treatment, allowed the amplification of significant amounts of DNA. By using propidium monoazide, which is a photoreactive DNA-binding dye, the presence of non-negligible amounts of amplifiable DNA at the spore surface was highlighted. A further set of extraction assays was then performed on spores previously treated with PMA. The results of this study show that both superficial and intracellular spore DNA can be released by extraction methods to a greater or lesser extent and then further amplified by qPCR. The Precellys extraction allowed the detection of both intracellular and superficial DNA, the DNeasy Blood & Tissue kit the specific detection of intracellular DNA, while the Instagene kit detected only superficial DNA. Of the methods tested in this study, the Precellys extraction was the most efficient in terms of further DNA detection. SIGNIFICANCE AND IMPACT OF THE STUDY: In order to verify the presence or absence of B. cereus spores in food or on surfaces in the food environment, the use of an efficient extraction method is required, followed by a qPCR analysis on the DNA released. Conversely, in order to quantify the population of Bacillus spores, any superficial DNA must be blocked, e.g. with PMA, prior to intracellular DNA extraction and further amplification.


Assuntos
Bacillus/genética , DNA Bacteriano/isolamento & purificação , Técnicas Genéticas/normas , Esporos Bacterianos/genética , Azidas/química , Bacillus/química , DNA Bacteriano/genética , Espaço Intracelular/química , Propídio/análogos & derivados , Propídio/química , Reação em Cadeia da Polimerase em Tempo Real , Esporos Bacterianos/química
9.
PLoS One ; 12(12): e0189422, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261714

RESUMO

BACKGROUND: The association between Cryptosporidium and human colon cancer has been reported in different populations. However, this association has not been well studied. In order to add new strong arguments for a probable link between cryptosporidiosis and colon human cancer, the aim of this study was to determine prevalence and to identify species of Cryptosporidium among Lebanese patients. METHODOLOGY AND PRINCIPAL FINDINGS: Overall, 218 digestive biopsies were collected in Tripoli, Lebanon, from three groups of patients: (i) patients with recently diagnosed colon intraepithelial neoplasia/adenocarcinoma before any treatment (n = 72); (ii) patients with recently diagnosed stomach intraepithelial neoplasia/adenocarcinoma before any treatment (n = 21); and (iii) patients without digestive intraepithelial neoplasia/adenocarcinoma but with persistent digestive symptoms (n = 125). DNA extraction was performed from paraffin-embedded tissue. The presence of the parasite in tissues was confirmed by PCR, microscopic observation and immunofluorescence analysis. We identified a high rate (21%) of Cryptosporidium presence in biopsies from Lebanese patients with recently diagnosed colonic neoplasia/adenocarcinoma before any treatment. This prevalence was significantly higher compared to 7% of Cryptosporidium prevalence among patients without colon neoplasia but with persistent gastrointestinal symptoms (OR: 4, CI: 1.65-9.6, P = 0.001). When the comparison was done against normal biopsies, the risk of infection increased 11-fold in the group of patients with colon adenocarcinoma (OR: 11.315, CI: 1.44-89.02, P = 0.003). CONCLUSIONS: This is the first study performed in Lebanon reporting the prevalence of Cryptosporidium among patients with digestive cancer. These results show that Cryptosporidium is strongly associated with human colon cancer being maybe a potential etiological agent of this disease.


Assuntos
Adenocarcinoma/epidemiologia , Adenocarcinoma/parasitologia , Neoplasias do Colo/epidemiologia , Neoplasias do Colo/parasitologia , Criptosporidiose/complicações , Cryptosporidium/fisiologia , Adenocarcinoma/complicações , Adenocarcinoma/patologia , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos de Casos e Controles , Neoplasias do Colo/complicações , Neoplasias do Colo/patologia , Feminino , Humanos , Líbano/epidemiologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Adulto Jovem
10.
Sci Rep ; 7(1): 15896, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162859

RESUMO

Despite the tremendous progress in medicine, cancer remains one of the most serious global health problems awaiting new effective therapies. Here we present ferroquine (FQ), the next generation antimalarial drug, as a promising candidate for repositioning as cancer therapeutics. We report that FQ potently inhibits autophagy, perturbs lysosomal function and impairs prostate tumor growth in vivo. We demonstrate that FQ negatively regulates Akt kinase and hypoxia-inducible factor-1α (HIF-1α) and is particularly effective in starved and hypoxic conditions frequently observed in advanced solid cancers. FQ enhances the anticancer activity of several chemotherapeutics suggesting its potential application as an adjuvant to existing anticancer therapy. Alike its parent compound chloroquine (CQ), FQ accumulates within and deacidifies lysosomes. Further, FQ induces lysosomal membrane permeabilization, mitochondrial depolarization and caspase-independent cancer cell death. Overall, our work identifies ferroquine as a promising new drug with a potent anticancer activity.


Assuntos
Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Compostos Ferrosos/farmacologia , Aminoquinolinas/química , Animais , Antimaláricos/química , Autofagia/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/química , Cloroquina/farmacologia , Feminino , Compostos Ferrosos/química , Concentração de Íons de Hidrogênio , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Metalocenos , Camundongos Nus , Neoplasias/patologia , Permeabilidade , Estresse Fisiológico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Rep ; 7(1): 14082, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074990

RESUMO

Intracellular ion channels are involved in multiple signaling processes, including such crucial ones as regulation of cellular motility and fate. With 95% of the cellular membrane belonging to intracellular organelles, it is hard to overestimate the importance of intracellular ion channels. Multiple studies have been performed on these channels over the years, however, a unified approach allowing not only to characterize their activity but also to study their regulation by partner proteins, analogous to the patch clamp "golden standard", is lacking. Here, we present a universal approach that combines the extraction of intracellular membrane fractions with the preparation of patchable substrates that allows to characterize these channels in endogenous protein environment and to study their regulation by partner proteins. We validate this method by characterizing activity of multiple intracellular ion channels localized to different organelles and by providing detailed electrophysiological characterization of the regulation of IP3R activity by endogenous Bcl-2. Thus, after synthesis and reshaping of the well-established approaches, organelle membrane derived patch clamp provides the means to assess ion channels from arbitrary cellular membranes at the single channel level.


Assuntos
Fracionamento Celular/métodos , Membranas Intracelulares , Organelas , Linhagem Celular Tumoral , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membranas Intracelulares/metabolismo , Organelas/metabolismo , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
12.
Sci Rep ; 7(1): 4728, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680151

RESUMO

Humans are exposed to multiple exogenous environmental pollutants. Many of these compounds are parts of mixtures that can exacerbate harmful effects of the individual mixture components. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is primarily produced via industrial processes including incineration and the manufacture of herbicides. Both endosulfan and TCDD are persistent organic pollutants which elicit cytotoxic effects by inducing reactive oxygen species generation. Sublethal concentrations of mixtures of TCDD and endosulfan increase oxidative stress, as well as mitochondrial homeostasis disruption, which is preceded by a calcium rise and, in fine, induce cell death. TCDD+Endosulfan elicit a complex signaling sequence involving reticulum endoplasmic destalilization which leads to Ca2+ rise, superoxide anion production, ATP drop and late NADP(H) depletion associated with a mitochondrial induced apoptosis concomitant early autophagic processes. The ROS scavenger, N-acetyl-cysteine, blocks both the mixture-induced autophagy and death. Calcium chelators act similarly and mitochondrially targeted anti-oxidants also abrogate these effects. Inhibition of the autophagic fluxes with 3-methyladenine, increases mixture-induced cell death. These findings show that subchronic doses of pollutants may act synergistically. They also reveal that the onset of autophagy might serve as a protective mechanism against ROS-triggered cytotoxic effects of a cocktail of pollutants in Caco-2 cells and increase their tumorigenicity.


Assuntos
Endossulfano/toxicidade , Poluentes Ambientais/toxicidade , Mitocôndrias/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Apoptose , Autofagia , Células CACO-2 , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Testes de Toxicidade Subcrônica
13.
Environ Pollut ; 228: 102-110, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28527321

RESUMO

Calanoid copepods play an important role in the functioning of marine and brackish ecosystems. Information is scarce on the behavioral toxicity of engineered nanoparticles to these abundant planktonic organisms. We assessed the effects of short-term exposure to nonfunctionalized gold nanoparticles on the swimming behavior of the widespread estuarine copepod Eurytemora affinis. By means of three-dimensional particle tracking velocimetry, we reconstructed the trajectories of males, ovigerous and non-ovigerous females. We quantified changes in their swimming activity and in the kinematics and geometrical properties of their motion, three important descriptors of the motility patterns of zooplankters. In females, exposure to gold nanoparticles in suspension (11.4 µg L-1) for 30 min caused depressed activity and lower velocity and acceleration, whereas the same exposure caused minimal effects in males. This response differs clearly from the hyperactive behavior that is commonly observed in zooplankters exposed to pollutants, and from the generally lower sensitivity of female copepods to toxicants. Accumulation of gold nanoparticles on the external appendages was not observed, precluding mechanical effects. Only very few nanoparticles appeared sporadically in the inner part of the gut in some samples, either as aggregates or as isolated nanoparticles, which does not suggest systemic toxicity resulting from pronounced ingestion. Hence, the precise mechanisms underlying the behavioral toxicity observed here remain to be elucidated. These results demonstrate that gold nanoparticles can induce marked behavioral alterations at very low concentration and short exposure duration. They illustrate the applicability of swimming behavior as a suitable and sensitive endpoint for investigating the toxicity of nanomaterials present in estuarine and marine environments. Changes in swimming behavior may impair the ability of planktonic copepods to interact with their environment and with other organisms, with possible impacts on population dynamics and community structure.


Assuntos
Copépodes/fisiologia , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Natação/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Copépodes/efeitos dos fármacos , Feminino , Masculino , Plâncton , Suspensões , Testes de Toxicidade
14.
Mol Carcinog ; 56(8): 1851-1867, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28277613

RESUMO

Previous studies showed the effects of resveratrol (RES) on several cancer cells, including prostate cancer (PCa) cell apoptosis without taking into consideration the impact of the tumor microenvironment (TME). The TME is composed of cancer cells, endothelial cells, blood cells, and cancer-associated fibroblasts (CAF), the main source of growth factors. The latter cells might modify in the TME the impact of RES on tumor cells via secreted factors. Recent data clearly show the impact of CAF on cancer cells apoptosis resistance via secreted factors. However, the effects of RES on PCa CAF have not been studied so far. We have investigated here for the first time the effects of RES on the physiology of PCa CAF in the context of TME. Using a prostate cancer CAF cell line and primary cultures of CAF from prostate cancers, we show that RES activates the N-terminal mutated Transient Receptor Potential Ankyrin 1 (TRPA1) channel leading to an increase in intracellular calcium concentration and the expression and secretion of growth factors (HGF and VEGF) without inducing apoptosis in these cells. Interestingly, in the present work, we also show that when the prostate cancer cells were co-cultured with CAF, the RES-induced cancer cell apoptosis was reduced by 40%, an apoptosis reduction canceled in the presence of the TRPA1 channel inhibitors. The present work highlights CAF TRPA1 ion channels as a target for RES and the importance of the channel in the epithelial-stromal crosstalk in the TME leading to resistance to the RES-induced apoptosis.


Assuntos
Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Canais de Cálcio/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Estilbenos/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/análise , Canais de Cálcio/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Mutação , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Resveratrol , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/análise , Canais de Potencial de Receptor Transitório/genética , Microambiente Tumoral/efeitos dos fármacos
15.
Cell Chem Biol ; 24(3): 326-338, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28262560

RESUMO

A better in vivo understanding of lignin formation within plant cell walls will contribute to improving the valorization of plant-derived biomass. Although bioorthogonal chemistry provides a promising platform to study the lignification process, methodologies that simultaneously detect multiple chemical reporters in living organisms are still scarce. Here, we have developed an original bioorthogonal labeling imaging sequential strategy (BLISS) to visualize and analyze the incorporation of both p-hydroxyphenyl (H) and guaiacyl (G) units into lignin in vivo with a combination of strain-promoted and copper-catalyzed azide-alkyne cycloadditions. On our path to BLISS, we designed a new azide-tagged monolignol reporter for H units in metabolic lignin engineering and used it in conjunction with an alkyne-tagged G unit surrogate to study lignification dynamics in flax. Here, we show that BLISS provides precise spatial information on the zones of active lignification and reveals polarization in single-cell lignification dynamics.


Assuntos
Lignina/química , Plantas/metabolismo , Coloração e Rotulagem/métodos , Alcinos/química , Azidas/química , Catálise , Parede Celular/química , Parede Celular/metabolismo , Cobre/química , Ácidos Cumáricos , Reação de Cicloadição , Linho/química , Linho/metabolismo , Lignina/metabolismo , Microscopia de Fluorescência , Plantas/química , Propionatos/química
16.
Cell Mol Life Sci ; 74(11): 2107-2125, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28138739

RESUMO

The nuclear pore is a key structure in eukaryotes regulating nuclear-cytoplasmic transport as well as a wide range of cellular processes. Here, we report the characterization of the first Toxoplasma gondii nuclear pore protein, named TgNup302, which appears to be the orthologue of the mammalian Nup98-96 protein. We produced a conditional knock-down mutant that expresses TgNup302 under the control of an inducible tetracycline-regulated promoter. Under ATc treatment, a substantial decrease of TgNup302 protein in inducible knock-down (iKD) parasites was observed, causing a delay in parasite proliferation. Moreover, the nuclear protein TgENO2 was trapped in the cytoplasm of ATc-treated mutants, suggesting that TgNup302 is involved in nuclear transport. Fluorescence in situ hybridization revealed that TgNup302 is essential for 18S RNA export from the nucleus to the cytoplasm, while global mRNA export remains unchanged. Using an affinity tag purification combined with mass spectrometry, we identified additional components of the nuclear pore complex, including proteins potentially interacting with chromatin. Furthermore, reverse immunoprecipitation confirmed their interaction with TgNup302, and structured illuminated microscopy confirmed the NPC localization of some of the TgNup302-interacting proteins. Intriguingly, facilitates chromatin transcription complex (FACT) components were identified, suggesting the existence of an NPC-chromatin interaction in T. gondii. Identification of TgNup302-interacting proteins also provides the first glimpse at the NPC structure in Apicomplexa, suggesting a structural conservation of the NPC components between distant eukaryotes.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Animais , Sistemas CRISPR-Cas , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Microscopia , Parasitos/metabolismo , Fenótipo , Ligação Proteica , Transporte Proteico , Transporte de RNA , RNA Ribossômico 18S/metabolismo , Toxoplasma/crescimento & desenvolvimento
17.
Cancer Prev Res (Phila) ; 10(3): 177-187, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28096238

RESUMO

Accruing evidence indicates that exposure to environmental compounds may adversely affect human health and promote carcinogenesis. Triclosan (TCS), an antimicrobial agent widely used as a preservative in personal care products, has been shown to act as an endocrine disruptor in hormone-dependent tissues. Here, we demonstrate a new molecular mechanism by which TCS stimulates the secretion by human prostate cancer stromal cells of vascular endothelial growth factor (VEGF), a factor known to promote tumor growth. This mechanism involves an increase in intracellular calcium levels due to the direct activation of a membrane ion channel. Using calcium imaging and electrophysiology techniques, we show for the first time that environmentally relevant concentrations of TCS activate a cation channel of the TRP family, TRPA1 (Transient Receptor Potential Ankirin 1), in primary cultured human prostate cancer stromal cells. The TCS-induced TRPA1 activation increased basal calcium in stromal cells and stimulated the secretion of VEGF and epithelial cells proliferation. Interestingly, immunofluorescence labeling performed on formalin-fixed paraffin-embedded prostate tissues showed an exclusive expression of the TRPA1 channel in prostate cancer stromal cells. Our data demonstrate an impact of the environmental factor TCS on the tumor microenvironment interactions, by activating a tumor stroma-specific TRPA1 ion channel. Cancer Prev Res; 10(3); 177-87. ©2017 AACR.


Assuntos
Anti-Infecciosos Locais/toxicidade , Canais de Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Próstata/metabolismo , Células Estromais/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/metabolismo , Triclosan/toxicidade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Carcinógenos Ambientais/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Células Estromais/metabolismo , Canal de Cátion TRPA1 , Microambiente Tumoral/efeitos dos fármacos
18.
Environ Sci Pollut Res Int ; 24(4): 4144-4152, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27933501

RESUMO

Graphene oxide (GO), a recently discovered material, has been investigated for many applications in various fields. Thus, an immense awareness should be paid on the potential effects of the material on the environment as huge quantities of GO may get to the environment. Aquatic organisms, marine algae as an example, are exposed to such material when disposed to the environment. Accordingly, it is significant to assess the probable interactions of GO with algae in evaluating its possible environmental risks. In this study, we have examined the effect of different concentrations of GO on Picochlorum sp. during the different growth phases. The results showed that the toxicity of GO increases with increasing its concentration. The lowest concentration (0.5 mg L-1) was found to improve the algae growth and pigment content of Picochlorum sp. In contrast, higher GO concentrations had a negative consequence on the growth of algae and photosynthetic pigment concentration.


Assuntos
Clorófitas/efeitos dos fármacos , Grafite/farmacologia , Fotossíntese/efeitos dos fármacos
19.
Sci Rep ; 6: 38842, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966671

RESUMO

Accurate sorting of proteins to the three types of parasite-specific secretory organelles namely rhoptry, microneme and dense granule in Toxoplasma gondii is crucial for successful host cell invasion by this obligate intracellular parasite. Despite its tiny body architecture and limited trafficking machinery, T. gondii relies heavily on transport of vesicles containing proteins, lipids and important virulence-like factors that are delivered to these secretory organelles. However, our understanding on how trafficking of vesicles operates in the parasite is still limited. Here, we show that the T. gondii vacuolar protein sorting 9 (TgVps9), has guanine nucleotide exchange factor (GEF) activity towards Rab5a and is crucial for sorting of proteins destined to secretory organelles. Our results illuminate features of TgVps9 protein as a key trafficking facilitator that regulates protein maturation, secretory organelle formation and secretion, thereby ensuring a primary role in host infection by T. gondii.


Assuntos
Proteínas de Protozoários/metabolismo , Via Secretória , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Linhagem Celular , Humanos , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasmose/genética , Vesículas Transportadoras/genética , Proteínas de Transporte Vesicular/genética
20.
Oncotarget ; 7(42): 67699-67715, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27563820

RESUMO

Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated ß-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-ß-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts.


Assuntos
Fator 6 Ativador da Transcrição/genética , Senescência Celular/genética , Fibroblastos/metabolismo , Resposta a Proteínas não Dobradas/genética , Fator 6 Ativador da Transcrição/metabolismo , Adulto , Células Cultivadas , Criança , Derme/citologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático/genética , Feminino , Fibroblastos/citologia , Perfilação da Expressão Gênica/métodos , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Interferência de RNA , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA