Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Nanomedicine ; 19: 9009-9033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246425

RESUMO

Background: The high infectivity of coronaviruses has led to increased interest in developing new strategies to prevent virus spread. Silver nanoparticles (AgNPs) and graphene oxide (GO) have attracted much attention in the antiviral field. We investigated the potential antiviral activity of GO and AgNPs combined in the nanocomposite GO-Ag against murine betacoronavirus MHV using an in vitro model. Methods: GO, AgNPs, and GO-Ag characterization (size distribution, zeta potential, TEM visualization, FT-IR, and EDX analysis) and XTT assay were performed. The antiviral activity of GO-Ag nanocomposites was evaluated by RT-qPCR and TCID50 assays. The results were compared with free AgNPs and pure GO. Cell growth and morphology of MHV-infected hepatocytes treated with GO-Ag composites were analyzed by JuLI™Br. Immunofluorescence was used to visualize the cell receptor used by MHV. Ultrastructural SEM analysis was performed to examine cell morphology after MHV infection and GO-Ag composite treatment. Results: A significant reduction in virus titer was observed for all nanocomposites tested, ranging from 3.2 to 7.3 log10 TCID50. The highest titer reduction was obtained for GO 5 µg/mL - Ag 25 µg/mL in the post-treatment method. These results were confirmed by RT-qPCR analysis. The results indicate that GO-Ag nanocomposites exhibited better antiviral activity compared to AgNPs and GO. Moreover, the attachment of AgNPs to the GO flake platform reduced their cytotoxicity. In addition, the GO-Ag composite modulates the distribution of the Ceacam1 cell receptor and can modulate cell morphology. Conclusion: Graphene oxide sheets act as a stabilizing agent, inhibiting the accumulation of AgNPs and reducing their cellular toxicity. The GO-Ag composite can physically bind and inhibit murine betacoronavirus from entering cells. Furthermore, the constant presence of GO-Ag can inhibit MHV replication and significantly limit its extracellular release. In conclusion, GO-Ag shows promise as an antiviral coating on solid surfaces to minimize virus transmission and spread.


Assuntos
Antivirais , Grafite , Nanopartículas Metálicas , Nanocompostos , Prata , Grafite/farmacologia , Grafite/química , Prata/química , Prata/farmacologia , Animais , Nanocompostos/química , Antivirais/farmacologia , Antivirais/química , Camundongos , Nanopartículas Metálicas/química , Vírus da Hepatite Murina/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Linhagem Celular
2.
Pathogens ; 13(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38392896

RESUMO

Human adenovirus (HAdV) is a common pathogen, which can lead to various clinical symptoms and-in some cases-central nervous system (CNS) dysfunctions, such as encephalitis and meningitis. Although the initial events of virus entry have already been identified in various cell types, the mechanism of neuronal uptake of adenoviruses is relatively little understood. The aim of this study was to investigate early events during adenoviral infection, in particular to determine the connection between cellular coxsackievirus and adenovirus receptor (CAR), clathrin, caveolin, and early endosomal proteins (EEA1 and Rab5) with the entry of HAdVs into primary murine neurons in vitro. An immunofluorescence assay and confocal microscopy analysis were carried out to determine HAdV4, 5, and 7 correlation with CAR, clathrin, caveolin, and early endosomal proteins in neurons. The quantification of Pearson's coefficient between CAR and HAdVs indicated that the HAdV4 and HAdV5 types correlated with CAR and that the correlation was more substantial for HAdV5. Inhibition of clathrin-mediated endocytosis using chlorpromazine limited the infection with HAdV, whereas inhibition of caveolin-mediated endocytosis did not affect virus entry. Thus, the entry of tested HAdV types into neurons was most likely associated with clathrin but not caveolin. It was also demonstrated that HAdVs correlate with the Rab proteins (EEA1, Rab5) present in early vesicles, and the observed differences in the manner of correlation depended on the serotype of the virus. With our research, we strove to expand knowledge regarding the mechanism of HAdV entry into neurons, which may be beneficial for developing potential therapeutics in the future.

3.
Pathogens ; 11(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36014997

RESUMO

Mitochondria are key cellular organelles responsible for many essential functions, including ATP production, ion homeostasis and apoptosis induction. Recent studies indicate their significant role during viral infection. In the present study, we examined the effects of equine herpesvirus type 1 (EHV-1) infection on the morphology and mitochondrial function in primary murine neurons in vitro. We used three EHV-1 strains: two non-neuropathogenic (Jan-E and Rac-H) and one neuropathogenic (EHV-1 26). The organization of the mitochondrial network during EHV-1 infection was assessed by immunofluorescence. To access mitochondrial function, we analyzed reactive oxygen species (ROS) production, mitophagy, mitochondrial inner-membrane potential, mitochondrial mass, and mitochondrial genes' expression. Changes in mitochondria morphology during infection suggested importance of their perinuclear localization for EHV-1 replication. Despite these changes, mitochondrial functions were preserved. For all tested EHV-1 strains, the similarities in the increased fold expression were detected only for COX18, Sod2, and Tspo. For non-neuropathogenic strains (Jan-E and Rac-H), we detected mainly changes in the expression of genes related to mitochondrial morphology and transport. The results indicate that mitochondria play an important role during EHV-1 replication in cultured neurons and undergo specific morphological and functional modifications.

4.
Pathogens ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35456075

RESUMO

Equid alphaherpesvirus 1 (EHV-1) causes respiratory diseases, abortion, and neurological disorders in horses. Recently, the oncolytic potential of this virus and its possible use in anticancer therapy has been reported, but its influence on cytoskeleton was not evaluated yet. In the following study, we have examined disruptions in actin cytoskeleton of glioblastoma multiforme in vitro model-A172 cell line, caused by EHV-1 infection. We used three EHV-1 strains: two non-neuropathogenic (Jan-E and Rac-H) and one neuropathogenic (EHV-1 26). Immunofluorescent labelling, confocal microscopy, real-time cell growth analysis and OrisTM cell migration assay revealed disturbed migration of A172 cells infected with the EHV-1, probably due to rearrangement of actin cytoskeleton and the absence of cell projections. All tested strains caused disruption of the actin network and general depolymerization of microfilaments. The qPCR results confirmed the effective replication of EHV-1. Thus, we have demonstrated, for the first time, that EHV-1 infection leads to inhibition of proliferation and migration in A172 cells, which might be promising for new immunotherapy treatment.

5.
Viruses ; 13(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34696425

RESUMO

Sialodacryoadenitis virus (SDAV) is known to be an etiological agent, causing infections in laboratory rats. Until now, its role has only been considered in studies on respiratory and salivary gland infections. The scant literature data, consisting mainly of papers from the last century, do not sufficiently address the topic of SDAV infections. The ongoing pandemic has demonstrated, once again, the role of the Coronaviridae family as extremely dangerous etiological agents of human zoonoses. The ability of coronaviruses to cross the species barrier and change to hosts commonly found in close proximity to humans highlights the need to characterize SDAV infections. The main host of the infection is the rat, as mentioned above. Rats inhabit large urban agglomerations, carrying a vast epidemic threat. Of the 2277 existing rodent species, 217 are reservoirs for 66 zoonotic diseases caused by viruses, bacteria, fungi, and protozoa. This review provides insight into the current state of knowledge of SDAV characteristics and its likely zoonotic potential.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus do Rato/genética , Coronavirus do Rato/patogenicidade , Zoonoses Virais/epidemiologia , Animais , Infecções por Coronavirus/transmissão , Coronavirus do Rato/classificação , Ratos , Especificidade da Espécie , Replicação Viral/fisiologia
6.
Arch Virol ; 166(5): 1371-1383, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33715038

RESUMO

Herpesviruses are capable of infecting not only neurons, where they establish latent infection, but also astrocytes. Since astrocytes are important for the functioning of the central nervous system (CNS), their infection may lead to serious neurological disorders. Thus, in the present study we investigated the ability of human herpesvirus type 2 (HHV-2) to infect primary murine astrocytes in vitro and the effect of infection on their mitochondrial network and actin cytoskeleton. In immunofluorescence assays, antibodies against HHV-2 antigens and glial fibrillary acidic protein (GFAP) were used to confirm that the infected cells are indeed astrocytes. Real-time PCR analysis showed a high level of HHV-2 replication in astrocytes, particularly at 168 h postinfection, confirming that a productive infection had occurred. Analysis of mitochondrial morphology showed that, starting from the first stage of infection, HHV-2 caused fragmentation of the mitochondrial network and formation of punctate and tubular structures that colocalized with virus particles. Furthermore, during the late stages of infection, the infection affected the actin cytoskeleton and induced formation of actin-based cellular projections, which were probably associated with enhanced intracellular spread of the virus. These results suggest that the observed changes in the mitochondrial network and actin cytoskeleton in productively infected astrocytes are required for effective replication and viral spread in a primary culture of astrocytes. Moreover, we speculate that, in response to injury such as HHV-2 infection, murine astrocytes cultured in vitro undergo transformation, defined in vivo as reactive astrocytosis.


Assuntos
Citoesqueleto de Actina/patologia , Astrócitos/virologia , Herpesvirus Humano 2/fisiologia , Mitocôndrias/patologia , Citoesqueleto de Actina/metabolismo , Animais , Astrócitos/patologia , Células Cultivadas , Gliose , Cinética , Camundongos , Mitocôndrias/metabolismo , Vírion/metabolismo , Replicação Viral
7.
Int J Nanomedicine ; 15: 4969-4990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764930

RESUMO

BACKGROUND: Polyphenols possess antioxidant, anti-inflammatory and antimicrobial properties and have been used in the treatment of skin wounds and burns. We previously showed that tannic acid-modified AgNPs sized >26 nm promote wound healing, while tannic acid-modified AgNPs sized 13 nm can elicit strong local inflammatory response. In this study, we tested bimetallic Au@AgNPs sized 30 nm modified with selected flavonoid and non-flavonoid compounds for wound healing applications. METHODS: Bimetallic Au@AgNPs were obtained by growing an Ag layer on AuNPs and further modified with selected polyphenols. After toxicity tests and in vitro scratch assay in HaCaT cells, modified lymph node assay as well as the mouse splint wound model were further used to access the wound healing potential of selected non-toxic modifications. RESULTS: Tannic acid, gallic acid, polydatin, resveratrol, catechin, epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate and procyanidin B2 used to modify Au@AgNPs exhibited good toxicological profiles in HaCaT cells. Au@AgNPs modified with 15 µM tannic acid, 200 µM resveratrol, 200 µM epicatechin gallate, 1000 µM gallic acid and 200 µM procyanidin B2 induced wound healing in vivo and did not lead to the local irritation or inflammation. Tannic acid-modified Au@AgNPs induced epithelial-to-mesenchymal transition (EMT) - like re-epithelialization, while other polyphenol modifications of Au@AgNPs acted through proliferation and wound closure. CONCLUSION: Bimetallic Au@AgNPs can be used as a basis for modification with selected polyphenols for topical uses. In addition, we have demonstrated that particular polyphenols used to modify bimetallic nanoparticles may show different effects upon different stages of wound healing.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Polifenóis/química , Polifenóis/farmacologia , Prata/química , Cicatrização/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Biflavonoides/química , Catequina/análogos & derivados , Catequina/química , Camundongos , Proantocianidinas/química , Taninos/química
8.
J Neurovirol ; 25(6): 765-782, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161588

RESUMO

Human herpesvirus types 1 and 2 (HHV-1 and HHV-2) are neurotropic viruses which remain latent for life and reactivate to cause recurrent infections. HHV-1 has been found to be involved in accumulation of ß-amyloid, hyperphosphorylation of tau proteins, and inflammation in the brain, which can later result in neuronal dysfunction and neurodegeneration. The relationship between HHV-2 and events associated with neurodegeneration has not been extensively studied. Neurons, more than any other cell type, depend on mitochondrial trafficking for their survival, and many types of mitochondrial abnormalities have been described in the etiology of neurodegenerative diseases. Therefore, in this study, we concentrated on mitochondrial dysfunction associated with HHV-1 and HHV-2 infection of primary murine neurons in vitro. We showed that starting from the first stages of HHV-1 and HHV-2 infection, an interaction of viral particles with the mitochondrial network occurs. Both HHV-1 and HHV-2 infection affected mitochondrial function at multiple levels, including upregulation of mitochondrial fission, decrease of the mitochondrial membrane potential, and increase of ROS level. The changes observed in the organization of the mitochondrial network and physiology of productively infected neurons provide appropriate conditions for HHV-1 and HHV-2 replication and are required for effective viral spread.


Assuntos
Infecções por Herpesviridae/virologia , Mitocôndrias/virologia , Dinâmica Mitocondrial , Neurônios/metabolismo , Neurônios/virologia , Animais , Células Cultivadas , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 1 , Herpesvirus Humano 2 , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo
9.
Oxid Med Cell Longev ; 2019: 2302835, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886672

RESUMO

Herpes simplex virus type 1 (HSV-1) has the ability to replicate in neurons and glial cells and to produce encephalitis leading to neurodegeneration. Accumulated evidence suggests that nitric oxide (NO) is a key molecule in the pathogenesis of neurotropic virus infections. NO can exert both cytoprotective as well as cytotoxic effects in the central nervous system (CNS) depending on its concentration, time course exposure, and site of action. In this study, we used an in vitro model of HSV-1-infected primary neuronal and mixed glial cultures as well as an intranasal model of HSV-1 in BALB/c mice to elucidate the role of NO and nonapoptotic Fas signalling in neuroinflammation and neurodegeneration. We found that low, nontoxic concentration of NO decreased HSV-1 replication in neuronal cultures together with production of IFN-alpha and proinflammatory chemokines. However, in HSV-1-infected glial cultures, low concentrations of NO supported virus replication and production of IFN-alpha and proinflammatory chemokines. HSV-1-infected microglia downregulated Fas expression and upregulated its ligand, FasL. Fas signalling led to production of proinflammatory cytokines and chemokines as well as induced iNOS in uninfected bystander glial cells. On the contrary, NO reduced production of IFN-alpha and CXCL10 through nonapoptotic Fas signalling in HSV-1-infected neuronal cultures. Here, we also observed colocalization of NO production with the accumulation of ß-amyloid peptide in HSV-1-infected neurons both in vitro and in vivo. Low levels of the NO donor increased accumulation of ß-amyloid in uninfected primary neuronal cultures, while the NO inhibitor decreased its accumulation in HSV-1-infected neuronal cultures. This study shows for the first time the existence of a link between NO and Fas signalling during HSV-1-induced neuroinflammation and neurodegeneration.


Assuntos
Herpesvirus Humano 1/fisiologia , Inflamação/virologia , Neurônios/patologia , Neurônios/virologia , Óxido Nítrico/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Quimiocinas , Chlorocebus aethiops , Proteína Ligante Fas/metabolismo , Herpesvirus Humano 1/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos , Receptor fas/metabolismo
10.
Arch Virol ; 163(10): 2663-2673, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29872950

RESUMO

Mitochondrial movement and distribution throughout the cytoplasm is crucial for maintaining cell homeostasis. Mitochondria are dynamic organelles but can be functionally disrupted during infection. Here, we show that the ubiquitous human pathogens HHV-1 and HHV-2 induce changes in the mitochondrial morphology and distribution in the early and late phases of productive infection in human keratinocytes (HaCaT cells). We observed a decrease in the mitochondrial potential at 2 h postinfection and a decrease in cell vitality at 24 h postinfection. Moreover, we found that mitochondria migrated to the perinuclear area, where HHV-1 and HHV-2 antigens were also observed, mainly in the early stages of infection. Positive results of real-time PCR showed a high level of HHV-1 and HHV-2 DNA in HaCaT cells and culture medium. Our data demonstrate that HHV-1 and HHV-2 cause mitochondrial dysfunction in human keratinocytes.


Assuntos
Herpes Simples/patologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Queratinócitos/patologia , Mitocôndrias/patologia , Dinâmica Mitocondrial/fisiologia , Antígenos Virais/imunologia , Linhagem Celular Transformada , Movimento Celular , DNA Viral/genética , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/imunologia , Humanos , Mitocôndrias/virologia
11.
Postepy Hig Med Dosw (Online) ; 71(0): 510-519, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28665280

RESUMO

In vitro models utilizing cells in planar two-dimensional (2D) cultures do not reflect the in vivo environment and are increasingly replaced by three-dimensional (3D) cultures. Fundamental differences between 2D and 3D cell cultures systems include cell attach, spread and grow, their morphology, proliferation, differentiation or gene and protein expression. For that reason 3D models have been proven to be invaluable tools of study for the various fields of science, such as drug discovery, cancer research, differentiation studies or neuroscience. In the present review, we discuss 3D neural in vitro models that might provide important insides about the mechanisms of pathogenesis of neurodegenerative diseases.


Assuntos
Técnicas de Cultura de Células/métodos , Doenças Neurodegenerativas/etiologia , Neurônios , Humanos
12.
Postepy Hig Med Dosw (Online) ; 70(0): 572-80, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27333927

RESUMO

Viruses, despite being relatively simple in structure and composition, have evolved a broad spectrum of mechanisms to exploit the host cell. To initiate effective infection, viruses or viral genomes have to enter cells. Recently studies have shown that apart from the direct fusion at the plasma membrane, endocytosis is more often the preferred means of entry into the host cell. Endocytosis is a complex phenomenon, that includes multiple pathways of membrane trafficking, such as clathrin-mediated endocytosis, caveolin-mediated endocytosis, macropinocytosis and phagocytosis. Endosomes offer a convenient and often rapid transit system across the plasma membrane and cytoplasm via the cellular microtubular network. They also provide protection to the virus from detection by the host's innate immune defences. What is important, viruses are able to utilize not just one, but multiple uptake routes. Identification of these processes and factors will not only allow a better insight into pathogenic mechanism, but may identify novel targets for future therapeutic development. This review provides insight on recent developments in the rapidly evolving field of viral entry.


Assuntos
Endocitose , Interações Hospedeiro-Patógeno , Viroses/fisiopatologia , Internalização do Vírus , Humanos
13.
Postepy Hig Med Dosw (Online) ; 67: 276-87, 2013 Apr 15.
Artigo em Polonês | MEDLINE | ID: mdl-23619227

RESUMO

Apoptosis is a process of programmed cell death in response to various stimuli, including virus infection. Herpesviruses have evolved the ability to interfere with apoptosis by its inhibition or activation in host cells. They can interfere with the extrinsic and intrinsic pathways of apoptosis. A special feature of herpesviruses is establishing a latent infection, during which expression of virus genes is strongly restricted and production of infectious virus particles is not observed. HSV-1 establishes latency in neurons, CMV in bone marrow progenitor cells and monocytes, EBV and HHV-8 in B cells. Studies show that latent infections also depend on prevention of the death of the infected cells. Control of apoptosis machinery by viruses may be critical for their reproduction and provision of the adequate yield of progeny virions. The present article summarizes the current knowledge about the latent viral infection and mechanisms of apoptosis modulation by selected viruses from the Herpesviridae family.


Assuntos
Apoptose , Infecções por Herpesviridae/virologia , Herpesviridae/fisiologia , Herpesviridae/patogenicidade , Linfócitos B/virologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 8/patogenicidade , Herpesvirus Humano 8/fisiologia , Humanos , Latência Viral
14.
Postepy Hig Med Dosw (Online) ; 66: 810-7, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23175336

RESUMO

Cytoskeleton, composed of actin filaments, microtubules and intermediate filaments, regulates many processes in the cell, e.g. intracellular transport. Actin and microtubules are polarized structures, along which bidirectional transport of motor proteins occurs: myosins along actin and the dynein/dynactin complex and kinesins along microtubules. Viruses interact with the cytoskeleton and motor proteins at different stages during their replication cycle. When entering and egressing the cell, viruses must penetrate the cortical layer of microfilaments, which usually takes place with the contribution of myosin. In the cytoplasm, retrograde transport involving dynein is used to move viruses to the microtubule organizing center. After replication, kinesins participate in anterograde transport of newly produced virions to the peripheral region, close to the plasma membrane. Some families of viruses have developed alternate routes of intracellular transport. The aim of this study is to describe the interactions between virus and cytoskeletal motor proteins and to determine their role in viral infection according to the current literature data.  


Assuntos
Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/virologia , Proteínas Motores Moleculares/metabolismo , Viroses/metabolismo , Vírus/patogenicidade , Citoesqueleto de Actina , Actinas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Citoplasma/metabolismo , Humanos , Cinesinas/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Miosinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA