Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(14): 1885-1895, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968602

RESUMO

ConspectusCoacervates are droplets formed by liquid-liquid phase separation (LLPS) and are often used as model protocells-primitive cell-like compartments that could have aided the emergence of life. Their continued presence as membraneless organelles in modern cells gives further credit to their relevance. The local physicochemical environment inside coacervates is distinctly different from the surrounding dilute solution and offers an interesting microenvironment for prebiotic reactions. Coacervates can selectively take up reactants and enhance their effective concentration, stabilize products, destabilize reactants and lower transition states, and can therefore play a similar role as micellar catalysts in providing rate enhancement and selectivity in reaction outcome. Rate enhancement and selectivity must have been essential for the origins of life by enabling chemical reactions to occur at appreciable rates and overcoming competition from hydrolysis.In this Accounts, we dissect the mechanisms by which coacervate protocells can accelerate reactions and provide selectivity. These mechanisms can similarly be exploited by membraneless organelles to control cellular processes. First, coacervates can affect the local concentration of reactants and accelerate reactions by copartitioning of reactants or exclusion of a product or inhibitor. Second, the local environment inside the coacervate can change the energy landscape for reactions taking place inside the droplets. The coacervate is more apolar than the surrounding solution and often rich in charged moieties, which can affect the stability of reactants, transition states and products. The crowded nature of the droplets can favor complexation of large molecules such as ribozymes. Their locally different proton and water activity can facilitate reactions involving a (de)protonation step, condensation reactions and reactions that are sensitive to hydrolysis. Not only the coacervate core, but also the surface can accelerate reactions and provides an interesting site for chemical reactions with gradients in pH, water activity and charge. The coacervate is often rich in catalytic amino acids and can localize catalysts like divalent metal ions, leading to further rate enhancement inside the droplets. Lastly, these coacervate properties can favor certain reaction pathways, and thereby give selectivity over the reaction outcome.These mechanisms are further illustrated with a case study on ribozyme reactions inside coacervates, for which there is a fine balance between concentration and reactivity that can be tuned by the coacervate composition. Furthermore, coacervates can both catalyze ribozyme reactions and provide product selectivity, demonstrating that coacervates could have functioned as enzyme-like catalytic microcompartments at the origins of life.


Assuntos
Células Artificiais , Catálise , Células Artificiais/química , Células Artificiais/metabolismo , Origem da Vida
2.
Chem Commun (Camb) ; 58(80): 11183-11200, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36128910

RESUMO

Living and proliferating cells undergo repeated cycles of growth, replication and division, all orchestrated by complex molecular networks. How a minimal cell cycle emerged and helped primitive cells to evolve remains one of the biggest mysteries in modern science, and is an active area of research in chemistry. Protocells are cell-like compartments that recapitulate features of living cells and may be seen as the chemical ancestors of modern life. While compartmentalization is not strictly required for primitive, open-ended evolution of self-replicating systems, it gives such systems a clear identity by setting the boundaries and it can help them overcome three major obstacles of dilution, parasitism and compatibility. Compartmentalization is therefore widely considered to be a central hallmark of primitive life, and various types of protocells are actively investigated, with the ultimate goal of developing a protocell capable of autonomous proliferation by mimicking the well-known cell cycle of growth, replication and division. We and others have found that coacervates are promising protocell candidates in which chemical building blocks required for life are naturally concentrated, and chemical reactions can be selectively enhanced or suppressed. This feature article provides an overview of how growth, replication and division can be realized with coacervates as protocells and what the bottlenecks are. Considerations are given for designing chemical networks in coacervates that can lead to sustained growth, selective replication and controlled division, in a way that they are linked together like in the cell cycle. Ultimately, such a system may undergo evolution by natural selection of certain phenotypes, leading to adaptation and the gain of new functions, and we end with a brief discussion of the opportunities for coacervates to facilitate this.


Assuntos
Células Artificiais , Células Artificiais/química , Ciclo Celular , Divisão Celular
3.
Chem Sci ; 12(5): 1661-1667, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34163926

RESUMO

The construction of macromolecular hosts that are able to thread chiral guests in a stereoselective fashion is a big challenge. We herein describe the asymmetric synthesis of two enantiomeric C 2-symmetric porphyrin macrocyclic hosts that thread and bind different viologen guests. Time-resolved fluorescence studies show that these hosts display a factor 3 kinetic preference (ΔΔG ‡ on = 3 kJ mol-1) for threading onto the different enantiomers of a viologen guest appended with bulky chiral 1-phenylethoxy termini. A smaller kinetic selectivity (ΔΔG ‡ on = 1 kJ mol-1) is observed for viologens equipped with small chiral sec-butoxy termini. Kinetic selectivity is absent when the C 2-symmetric hosts are threaded onto chiral viologens appended with chiral tails in which the chiral moieties are located in the centers of the chains, rather than at the chain termini. The reason is that the termini of the latter guests, which engage in the initial stages of the threading process (entron effect), cannot discriminate because they are achiral, in contrast to the chiral termini of the former guests. Finally, our experiments show that the threading and de-threading rates are balanced in such a way that the observed binding constants are highly similar for all the investigated host-guest complexes, i.e. there is no thermodynamic selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA