Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
mSystems ; 9(2): e0079523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275768

RESUMO

Quickly understanding the genomic changes that lead to pathogen emergence is necessary to launch mitigation efforts and reduce harm. In this study, we tracked in real time a 2022 bacterial plant disease outbreak in U.S. geraniums (Pelargonium × hortorum) caused by Xhp2022, a novel lineage of Xanthomonas hortorum. Genomes from 31 Xhp2022 isolates from seven states showed limited chromosomal variation and all contained a single plasmid (p93). Time tree and single nucleotide polymorphism whole-genome analysis estimated that Xhp2022 emerged within the last decade. The phylogenomic analysis determined that p93 resulted from the cointegration of three plasmids (p31, p45, and p66) found sporadically across isolates from previous outbreaks. Although p93 had a 49 kb nucleotide reduction, it retained putative fitness genes, which became predominant in the 2022 outbreak. Overall, we demonstrated, through rapid whole-genome sequencing and analysis, a recent, traceable event of genome reduction for niche adaptation typically observed over millennia in obligate and fastidious pathogens.IMPORTANCEThe geranium industry, valued at $4 million annually, faces an ongoing Xanthomonas hortorum pv. pelargonii (Xhp) pathogen outbreak. To track and describe the outbreak, we compared the genome structure across historical and globally distributed isolates. Our research revealed Xhp population has not had chromosome rearrangements since 1974 and has three distinct plasmids. In 2012, we found all three plasmids in individual Xhp isolates. However, in 2022, the three plasmids co-integrated into one plasmid named p93. p93 retained putative fitness genes but lost extraneous genomic material. Our findings show that the 2022 strain group of the bacterial plant pathogen Xanthomonas hortorum underwent a plasmid reduction. We also observed several Xanthomonas species from different years, hosts, and continents have similar plasmids to p93, possibly due to shared agricultural settings. We noticed parallels between genome efficiency and reduction that we see across millennia with obligate parasites with increased niche specificity.


Assuntos
Xanthomonas , Plasmídeos/genética , Xanthomonas/genética , Genômica , Surtos de Doenças
2.
Curr Biol ; 33(23): 5147-5159.e7, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052161

RESUMO

Fungi that are edible or fermentative were domesticated through selective cultivation of their desired traits. Domestication is often associated with inbreeding or selfing, which may fix traits other than those under selection, and causes an overall decrease in heterozygosity. A hallucinogenic mushroom, Psilocybe cubensis, was domesticated from its niche in livestock dung for production of psilocybin. It has caused accidental poisonings since the 1940s in Australia, which is a population hypothesized to be introduced from an unknown center of origin. We sequenced genomes of 38 isolates from Australia and compared them with 86 genomes of commercially available cultivars to determine (1) whether P. cubensis was introduced to Australia, and (2) how domestication has impacted commercial cultivars. Our analyses of genome-wide SNPs and single-copy orthologs showed that the Australian population is naturalized, having recovered its effective population size after a bottleneck when it was introduced, and it has maintained relatively high genetic diversity based on measures of nucleotide and allelic diversity. In contrast, domesticated cultivars generally have low effective population sizes and hallmarks of selfing and clonal propagation, including low genetic diversity, low heterozygosity, high linkage disequilibrium, and low allelic diversity of mating-compatibility genes. Analyses of kinship show that most cultivars are founded from related populations. Alleles in the psilocybin gene cluster are identical across most cultivars of P. cubensis with low diversity across coding sequence; however, unique allelic diversity in Australia and some cultivars may translate to differences in biosynthesis of psilocybin and its analogs.


Assuntos
Alucinógenos , Psilocibina , Domesticação , Austrália , Polimorfismo de Nucleotídeo Único , Variação Genética
3.
PLoS One ; 18(12): e0289280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127903

RESUMO

Trichoderma is a cosmopolitan genus with diverse lifestyles and nutritional modes, including mycotrophy, saprophytism, and endophytism. Previous research has reported greater metabolic gene repertoires in endophytic fungal species compared to closely-related non-endophytes. However, the extent of this ecological trend and its underlying mechanisms are unclear. Some endophytic fungi may also be mycotrophs and have one or more mycoparasitism mechanisms. Mycotrophic endophytes are prominent in certain genera like Trichoderma, therefore, the mechanisms that enable these fungi to colonize both living plants and fungi may be the result of expanded metabolic gene repertoires. Our objective was to determine what, if any, genomic features are overrepresented in endophytic fungi genomes in order to undercover the genomic underpinning of the fungal endophytic lifestyle. Here we compared metabolic gene cluster and mycoparasitism gene diversity across a dataset of thirty-eight Trichoderma genomes representing the full breadth of environmental Trichoderma's diverse lifestyles and nutritional modes. We generated four new Trichoderma endophyticum genomes to improve the sampling of endophytic isolates from this genus. As predicted, endophytic Trichoderma genomes contained, on average, more total biosynthetic and degradative gene clusters than non-endophytic isolates, suggesting that the ability to create/modify a diversity of metabolites potential is beneficial or necessary to the endophytic fungi. Still, once the phylogenetic signal was taken in consideration, no particular class of metabolic gene cluster was independently associated with the Trichoderma endophytic lifestyle. Several mycoparasitism genes, but no chitinase genes, were associated with endophytic Trichoderma genomes. Most genomic differences between Trichoderma lifestyles and nutritional modes are difficult to disentangle from phylogenetic divergences among species, suggesting that Trichoderma genomes maybe particularly well-equipped for lifestyle plasticity. We also consider the role of endophytism in diversifying secondary metabolism after identifying the horizontal transfer of the ergot alkaloid gene cluster to Trichoderma.


Assuntos
Endófitos , Trichoderma , Endófitos/genética , Trichoderma/genética , Filogenia , Plantas/genética , Família Multigênica/genética , Fungos/genética
4.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961470

RESUMO

Psilocybe zapotecorum is a strongly blue-bruising psilocybin mushroom used by indigenous groups in southeastern Mexico and beyond. While this species has a rich history of ceremonial use, research into its chemistry and genetics have been limited. Herein, we detail mushroom morphology and report on cultivation parameters, chemical profile, and the full genome sequence of P. zapotecorum . First, growth and cloning methods are detailed that are simple, and reproducible. In combination with high resolution microscopic analysis, the strain was barcoded, confirming species-level identification. Full genome sequencing reveals the architecture of the psilocybin gene cluster in P. zapotecorum, and can serve as a reference genome for Psilocybe Clade I. Characterization of the tryptamine profile revealed a psilocybin concentration of 17.9±1.7 mg/g, with a range of 10.6-25.7 mg/g (n=7), and similar tryptamines (psilocin, baeocystin, norbaeocystin, norpsilocin, aeruginascin, 4-HO-tryptamine, and tryptamine) in lesser concentrations for a combined tryptamine concentration of 22.5±3.2 mg/g. These results show P. zapotecorum to be a potent - and variable - Psilocybe mushroom. Chemical profiling, genetic analysis, and cultivation assist in demystifying these mushrooms. As clinical studies with psilocybin gain traction, understanding the diversity of psilocybin mushrooms will assure that psilocybin therapy does not become synonymous with psilocybin mushrooms.

5.
Nat Microbiol ; 8(9): 1668-1681, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550506

RESUMO

The fungal genus Armillaria contains necrotrophic pathogens and some of the largest terrestrial organisms that cause tremendous losses in diverse ecosystems, yet how they evolved pathogenicity in a clade of dominantly non-pathogenic wood degraders remains elusive. Here we show that Armillaria species, in addition to gene duplications and de novo gene origins, acquired at least 1,025 genes via 124 horizontal gene transfer events, primarily from Ascomycota. Horizontal gene transfer might have affected plant biomass degrading and virulence abilities of Armillaria, and provides an explanation for their unusual, soft rot-like wood decay strategy. Combined multi-species expression data revealed extensive regulation of horizontally acquired and wood-decay related genes, putative virulence factors and two novel conserved pathogenicity-induced small secreted proteins, which induced necrosis in planta. Overall, this study details how evolution knitted together horizontally and vertically inherited genes in complex adaptive traits of plant biomass degradation and pathogenicity in important fungal pathogens.


Assuntos
Armillaria , Armillaria/genética , Armillaria/metabolismo , Biomassa , Transferência Genética Horizontal , Ecossistema , Plantas
6.
Fungal Genet Biol ; 167: 103812, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37210028

RESUMO

Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.


Assuntos
Agaricales , Alucinógenos , Animais , Humanos , Psilocibina/genética , Psilocibina/química , Alucinógenos/química , Agaricales/genética , Agaricales/química , Antifúngicos/farmacologia , Serotonina
7.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848567

RESUMO

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Assuntos
Lentinula , Filogenia , Ásia Oriental , Tailândia
8.
Fungal Genet Biol ; 165: 103769, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36587787

RESUMO

Knowledge of breeding systems and genetic diversity is critical to select and combine desired traits that advance new cultivars in agriculture and horticulture. Mushrooms that produce psilocybin, magic mushrooms, may potentially be used in therapeutic and wellness industries, and stand to benefit from genetic improvement. We studied haploid siblings of Psilocybe subaeruginosa to resolve the genetics behind mating compatibility and advance knowledge of breeding. Our results show that mating in P. subaeruginosa is tetrapolar, with compatibility controlled at a homeodomain locus with one copy each of HD1 and HD2, and a pheromone/receptor locus with four homologs of the receptor gene STE3. An additional two pheromone/receptor loci homologous to STE3 do not appear to regulate mating compatibility. Alleles in the psilocybin gene cluster did not vary among the five siblings and were likely homozygous in the parent. Psilocybe subaeruginosa and its relatives have three copies of PsiH genes but their impact on production of psilocybin and its analogues is unknown. Genetic improvement in Psilocybe will require access to genetic diversity from the centre of origin of different species, identification of genes behind traits, and strategies to avoid inbreeding depression.


Assuntos
Psilocybe , Psilocibina , Psilocybe/genética , Duplicação Gênica , Receptores de Feromônios/genética , Feromônios , Genes Fúngicos Tipo Acasalamento
9.
Plant Dis ; 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581604

RESUMO

Dracaena trifasciata (Prain) Mabb. is a popular houseplant in the United States. In September 2021, two diseased samples from two Ohio homeowners were received by the Ornamental Pathology Laboratory at The Ohio State University. Each sample included one or two detached leaves displaying circular gray water-soaked lesions scattered throughout the lamina and blighted areas with concentric rings bearing brown to black acervuli. Lesions covered between 25 and 50% of the leaf surface. Isolations were made by excising small portions of leaf tissue from the margin of the lesions, surface-disinfesting in 10% bleach for 45 s, rinsing in sterile water, and plating on potato dextrose agar (PDA). Plates were incubated at 23°C for one week. Two representative isolates, one per sample (FPH2021-5 and -6), were obtained by transferring hyphal tips to fresh PDA plates. Mycelia of both isolates were aerial, cottony, grayish-white, producing spores in a gelatinous orange matrix, and appeared gray to olivaceous-gray on the plate underside. Conidia produced by both isolates were cylindrical, single-celled, hyaline, measuring 12.02 to 18.11 (15.51) × 5.03 to 7.29 (6.14) µm (FPH2021-5; n=50) and 15.58 to 20.90 (18.39) × 5.63 to 8.27 (7.05) µm (FPH2021-6; n=50). Appressoria were globose to subglobose, single-celled, dark brown to sepia, measuring 6.62 to 13.98 (8.97) × 5.05 to 6.58 (6.58) µm (FPH2021-5; n=50), and 6.54 to 11.32 (8.63) × 4.54 to 8.94 (7.09) µm (FPH2021-6; n=50). Genomic DNA (gDNA) samples were extracted from both isolates and the internal transcribed spacer (ITS) region was amplified using primers ITS1F/ITS4 (Gardes and Bruns, 1993; White et al. 1990). GenBank BLAST sequence analysis resulted in 99.83% (FPH2021-5; GenBank Acc. No. OP410918.1) and 100% (FPH2021-6; OP410917.1) identity with 100% query coverage to the type strain of Colletotrichum sansevieriae Miho Nakam. & Ohzono MAFF239721 or Sa-1-2 (NR_152313.1; Nakamura et al. 2006). Whole genome sequencing was conducted for FPH2021-6 and the assembly was deposited in GenBank (JAOQIF000000000.1). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ß-tubulin (ß-tub) regions were either extracted from the genome of FPH2021-6 (OP414603.1 and OP414601.1, respectively) or amplified from FPH2021-5 gDNA using primers GDF/GDR (OP414604.1) and Bt-2b/T1 (OP414602.1), respectively (Templeton et al. 1992; Glass and Donaldson 1995; O'Donnell and Cigelnik 1997). A multilocus partitioned analysis (Chernomor et al. 2016) based on concatenated sequences of ITS, GAPDH, and ß-tub using ModelFinder (Kalyaanamoorthy et al. 2017) was performed to build a maximum likelihood tree (IQ-TREE v2.0.3; Nguyen et al. 2015), suggesting that these two isolates are phylogenetically closer to the type strain from Japan than to a previously reported isolate 1047 from Florida (Palmateer et al. 2012). To fulfill Koch's postulates, two parallel leaf sections from one 10-inch D. trifasciata 'Laurentii' plant maintained in a 1.3-liter container were selected. Three wounds were made in each section using a sterile syringe needle. A 10-µl drop of either a 1×106 conidia/ml suspension of isolate FPH2021-6 or sterile water was placed on each wound. The plant was covered with a plastic bag for two days post-inoculation (DPI) and maintained in a greenhouse at 25°C with a 12- h photoperiod. The experiment was conducted twice. Grayish water-soaked lesions, acervuli, and leaf blight were observed on the inoculated sections 3, 10, and 14 DPI, respectively, while no symptoms appeared on the sections treated with sterile water. C. sansevieriae was re-isolated from the lesions and confirmed to be identical to the original isolate based on ITS sequencing and morphological examinations. To the best of our knowledge, this is the first report of C. sansevieriae on D. trifasciata in Ohio and the first genome draft of an isolate from the United States. Availability of whole-genome sequence data is paramount for resolving species identification in this highly diverse fungal genus, and a powerful tool to conduct comparative genomic analyses in the future.

10.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269198

RESUMO

Subtelomeres are dynamic genomic regions shaped by elevated rates of recombination, mutation, and gene birth/death. These processes contribute to formation of lineage-specific gene family expansions that commonly occupy subtelomeres across eukaryotes. Investigating the evolution of subtelomeric gene families is complicated by the presence of repetitive DNA and high sequence similarity among gene family members that prevents accurate assembly from whole genome sequences. Here, we investigated the evolution of the telomere-associated (TLO) gene family in Candida albicans using 189 complete coding sequences retrieved from 23 genetically diverse strains across the species. Tlo genes conformed to the 3 major architectural groups (α/ß/γ) previously defined in the genome reference strain but significantly differed in the degree of within-group diversity. One group, Tloß, was always found at the same chromosome arm with strong sequence similarity among all strains. In contrast, diverse Tloα sequences have proliferated among chromosome arms. Tloγ genes formed 7 primary clades that included each of the previously identified Tloγ genes from the genome reference strain with 3 Tloγ genes always found on the same chromosome arm among strains. Architectural groups displayed regions of high conservation that resolved newly identified functional motifs, providing insight into potential regulatory mechanisms that distinguish groups. Thus, by resolving intraspecies subtelomeric gene variation, it is possible to identify previously unknown gene family complexity that may underpin adaptive functional variation.


Assuntos
Candida albicans , Telômero , Candida albicans/genética , Telômero/genética , Heterocromatina , Mutação
11.
Microbiol Resour Announc ; 11(9): e0063122, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993780

RESUMO

Diaporthe ilicicola is a newly described fungal species that is associated with latent fruit rot in deciduous holly. This announcement provides a whole-genome assembly and annotation for this plant pathogen, which will inform research on its parasitism and identification of gene clusters involved in the production of bioactive metabolites.

12.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35588244

RESUMO

Accessory genes are variably present among members of a species and are a reservoir of adaptive functions. In bacteria, differences in gene distributions among individuals largely result from mobile elements that acquire and disperse accessory genes as cargo. In contrast, the impact of cargo-carrying elements on eukaryotic evolution remains largely unknown. Here, we show that variation in genome content within multiple fungal species is facilitated by Starships, a newly discovered group of massive mobile elements that are 110 kb long on average, share conserved components, and carry diverse arrays of accessory genes. We identified hundreds of Starship-like regions across every major class of filamentous Ascomycetes, including 28 distinct Starships that range from 27 to 393 kb and last shared a common ancestor ca. 400 Ma. Using new long-read assemblies of the plant pathogen Macrophomina phaseolina, we characterize four additional Starships whose activities contribute to standing variation in genome structure and content. One of these elements, Voyager, inserts into 5S rDNA and contains a candidate virulence factor whose increasing copy number has contrasting associations with pathogenic and saprophytic growth, suggesting Voyager's activity underlies an ecological trade-off. We propose that Starships are eukaryotic analogs of bacterial integrative and conjugative elements based on parallels between their conserved components and may therefore represent the first dedicated agents of active gene transfer in eukaryotes. Our results suggest that Starships have shaped the content and structure of fungal genomes for millions of years and reveal a new concerted route for evolution throughout an entire eukaryotic phylum.


Assuntos
Genoma Fúngico , Fatores de Virulência , Elementos de DNA Transponíveis , Células Eucarióticas , Humanos
13.
mSystems ; 7(3): e0023222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638725

RESUMO

Secondary metabolite clusters (SMCs) encode the machinery for fungal toxin production. However, understanding their function and analyzing their products requires investigation of the developmental and environmental conditions in which they are expressed. Gene expression is often restricted to specific and unexamined stages of the life cycle. Therefore, we applied comparative genomics analyses to identify SMCs in Neurospora crassa and analyzed extensive transcriptomic data spanning nine independent experiments from diverse developmental and environmental conditions to reveal their life cycle-specific gene expression patterns. We reported 20 SMCs comprising 177 genes-a manageable set for investigation of the roles of SMCs across the life cycle of the fungal model N. crassa-as well as gene sets coordinately expressed in 18 predicted SMCs during asexual and sexual growth under three nutritional and two temperature conditions. Divergent activity of SMCs between asexual and sexual development was reported. Of 126 SMC genes that we examined for knockout phenotypes, al-2 and al-3 exhibited phenotypes in asexual growth and conidiation, whereas os-5, poi-2, and pmd-1 exhibited phenotypes in sexual development. SMCs with annotated function in mating and crossing were actively regulated during the switch between asexual and sexual growth. Our discoveries call for attention to roles that SMCs may play in the regulatory switches controlling mode of development, as well as the ecological associations of those developmental stages that may influence expression of SMCs. IMPORTANCE Secondary metabolites (SMs) are low-molecular-weight compounds that often mediate interactions between fungi and their environments. Fungi enriched with SMs are of significant research interest to agriculture and medicine, especially from the aspects of pathogen ecology and environmental epidemiology. However, SM clusters (SMCs) that have been predicted by comparative genomics alone have typically been poorly defined and insufficiently functionally annotated. Therefore, we have investigated coordinate expression in SMCs in the model system N. crassa, and our results suggest that SMCs respond to environmental signals and to stress that are associated with development. This study examined SMC regulation at the level of RNA to integrate observations and knowledge of these genes in various growth and development conditions, supporting combining comparative genomics and inclusive transcriptomics to improve computational annotation of SMCs. Our findings call for detailed study of the function of SMCs during the asexual-sexual switch, a key, often-overlooked developmental stage.


Assuntos
Neurospora crassa , Metabolismo Secundário/genética , Neurospora crassa/genética , Perfilação da Expressão Gênica , Família Multigênica/genética , Desenvolvimento Sexual/genética
14.
Elife ; 112022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35156613

RESUMO

Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here, we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans, a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts, and developmental gene expression, but not RNA editing or a 'developmental hourglass,' act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of nonadaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Agaricales/genética , Agaricales/metabolismo , Ascomicetos/metabolismo , Carpóforos/genética , Carpóforos/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
15.
New Phytol ; 233(3): 1317-1330, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797921

RESUMO

Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts. Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles. All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition. Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.


Assuntos
Líquens , Xylariales , Endófitos , Fungos , Líquens/microbiologia , Família Multigênica , Simbiose/genética
16.
Front Plant Sci ; 13: 1057645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684722

RESUMO

Introduction: Products of plant secondary metabolism, such as phenolic compounds, flavonoids, alkaloids, and hormones, play an important role in plant growth, development, stress resistance. The plant family Rubiaceae is extremely diverse and abundant in Central America and contains several economically important genera, e.g. Coffea and other medicinal plants. These are known for the production of bioactive polyphenols (e.g. caffeine and quinine), which have had major impacts on human society. The overall goal of this study was to develop a high-throughput workflow to identify and quantify plant polyphenols. Methods: First, a method was optimized to extract over 40 families of phytochemicals. Then, a high-throughput metabolomic platform has been developed to identify and quantify 184 polyphenols in 15 min. Results: The current metabolomics study of secondary metabolites was conducted on leaves from one commercial coffee variety and two wild species that also belong to the Rubiaceae family. Global profiling was performed using liquid chromatography high-resolution time-of-flight mass spectrometry. Features whose abundance was significantly different between coffee species were discriminated using statistical analysis and annotated using spectral databases. The identified features were validated by commercially available standards using our newly developed liquid chromatography tandem mass spectrometry method. Discussion: Caffeine, trigonelline and theobromine were highly abundant in coffee leaves, as expected. Interestingly, wild Rubiaceae leaves had a higher diversity of phytochemicals in comparison to commercial coffee: defense-related molecules, such as phenylpropanoids (e.g., cinnamic acid), the terpenoid gibberellic acid, and the monolignol sinapaldehyde were found more abundantly in wild Rubiaceae leaves.

17.
Curr Biol ; 31(8): 1811, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33905684
18.
Curr Biol ; 31(5): R250-R252, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33689724

RESUMO

Many fungi transform host tissues to benefit their own reproduction. A recent study investigates a fungus that converts its plant host's reproductive tissues into ornate flower mimics. These 'pseudoflowers' present complex cues that may enlist insects to facilitate fungal dispersal.


Assuntos
Mimetismo Biológico , Fungos/fisiologia , Plantas/microbiologia , Animais , Ecologia , Flores , Insetos
19.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414338

RESUMO

Atheliales is a diverse order of crust-forming Basidiomycota fungi. Here, we report the draft genome of the "cuckoo fungus," Athelia (Fibularhizoctonia) sp. TMB strain TB5 (Atheliales), which forms termite-egg-mimicking sclerotia that termites tend. We further compare its repertoire of psilocybin gene homologs to homologs previously reported for Fibularhizoctonia psychrophila.

20.
Mol Biol Evol ; 38(4): 1339-1355, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185664

RESUMO

Chitinases enzymatically hydrolyze chitin, a highly abundant and utilized polymer of N-acetyl-glucosamine. Fungi are a rich source of chitinases; however, the phylogenetic and functional diversity of fungal chitinases are not well understood. We surveyed fungal chitinases from 373 publicly available genomes, characterized domain architecture, and conducted phylogenetic analyses of the glycoside hydrolase (GH18) domain. This large-scale analysis does not support the previous division of fungal chitinases into three major clades (A, B, C) as chitinases previously assigned to the "C" clade are not resolved as distinct from the "A" clade. Fungal chitinase diversity was partly shaped by horizontal gene transfer, and at least one clade of bacterial origin occurs among chitinases previously assigned to the "B" clade. Furthermore, chitin-binding domains (including the LysM domain) do not define specific clades, but instead are found more broadly across clades of chitinases. To gain insight into biological function diversity, we characterized all eight chitinases (Cts) from the thermally dimorphic fungus, Histoplasma capsulatum: six A clade, one B clade, and one formerly classified C clade chitinases. Expression analyses showed variable induction of chitinase genes in the presence of chitin but preferential expression of CTS3 in the mycelial stage. Activity assays demonstrated that Cts1 (B-I), Cts2 (A-V), Cts3 (A-V), Cts4 (A-V) have endochitinase activities with varying degrees of chitobiosidase function. Cts6 (C-I) has activity consistent with N-acetyl-glucosaminidase exochitinase function and Cts8 (A-II) has chitobiase activity. These results suggest chitinase activity is variable even within subclades and that predictions of functionality require more sophisticated models.


Assuntos
Quitinases/genética , Evolução Molecular , Proteínas Fúngicas/genética , Genoma Fúngico , Histoplasma/genética , Quitinases/metabolismo , Proteínas Fúngicas/metabolismo , Histoplasma/enzimologia , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA