Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 9541, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266999

RESUMO

Spin-transfer torques (STTs) can be exploited in order to manipulate the magnetic moments of nanomagnets, thus allowing for new consumer-oriented devices to be designed. Of particular interest here are tuneable radio-frequency (RF) oscillators for wireless communication. Currently, the structure that maximizes the output power is an Fe/MgO/Fe-type magnetic tunnel junction (MTJ) with a fixed layer magnetized in the plane of the layers and a free layer magnetized perpendicular to the plane. This structure allows for most of the tunnel magnetoresistance (TMR) to be converted into output power. Here, we experimentally and theoretically demonstrate that the main mechanism sustaining steady-state precession in such structures is the angular dependence of the magnetoresistance. The TMR of such devices is known to exhibit a broken-linear dependence versus the applied bias. Our results show that the TMR bias dependence effectively quenches spin-transfer-driven precession and introduces a non-monotonic frequency dependence at high applied currents. This has an impact on devices seeking to work in the 'THz gap' due to their non-trivial TMR bias dependences.

2.
Nat Nanotechnol ; 14(4): 328-333, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804478

RESUMO

Spin waves offer intriguing perspectives for computing and signal processing, because their damping can be lower than the ohmic losses in conventional complementary metal-oxide-semiconductor (CMOS) circuits. Magnetic domain walls show considerable potential as magnonic waveguides for on-chip control of the spatial extent and propagation of spin waves. However, low-loss guidance of spin waves with nanoscale wavelengths and around angled tracks remains to be shown. Here, we demonstrate spin wave control using natural anisotropic features of magnetic order in an interlayer exchange-coupled ferromagnetic bilayer. We employ scanning transmission X-ray microscopy to image the generation of spin waves and their propagation across distances exceeding multiples of the wavelength. Spin waves propagate in extended planar geometries as well as along straight or curved one-dimensional domain walls. We observe wavelengths between 1 µm and 150 nm, with excitation frequencies ranging from 250 MHz to 3 GHz. Our results show routes towards the practical implementation of magnonic waveguides in the form of domain walls in future spin wave logic and computational circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA