Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Med Chem ; 64(8): 4891-4902, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33822617

RESUMO

There remains an insufficient number of P2X7 receptor antagonists with adequate rodent potency, CNS permeability, and pharmacokinetic properties from which to evaluate CNS disease hypotheses preclinically. Herein, we describe the molecular pharmacology, safety, pharmacokinetics, and functional CNS target engagement of Lu AF27139, a novel rodent-active and CNS-penetrant P2X7 receptor antagonist. Lu AF27139 is highly selective and potent against rat, mouse, and human forms of the receptors. The rat pharmacokinetic profile is favorable with high oral bioavailability, modest clearance (0.79 L/(h kg)), and good CNS permeability. In vivo mouse CNS microdialysis studies of lipopolysaccharide (LPS)-primed and 2'(3')-O-(benzoylbenzoyl)adenosine-5'-triphosphate (BzATP)-induced IL-1ß release demonstrate functional CNS target engagement. Importantly, Lu AF27139 was without effect in standard in vitro and in vivo toxicity studies. Based on these properties, we believe Lu AF27139 will be a valuable tool for probing the role of the P2X7 receptor in rodent models of CNS diseases.


Assuntos
Sistema Nervoso Central/metabolismo , Antagonistas do Receptor Purinérgico P2X/síntese química , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Linhagem Celular , Sistema Nervoso Central/efeitos dos fármacos , Cães , Feminino , Meia-Vida , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microssomos Hepáticos/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Antagonistas do Receptor Purinérgico P2X/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/química
2.
Eur J Pharmacol ; 799: 1-6, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28188762

RESUMO

Idalopirdine (Lu AE58054) is a high affinity and selective antagonist for the human serotonin 5-HT6 receptor (Ki 0.83nM) in phase III development for mild-to-moderate Alzheimer's disease as an adjunct therapy to acetylcholinesterase inhibitors (AChEIs). We have studied the effects of idalopirdine on extracellular levels of monoamines, glutamate and acetylcholine in the medial prefrontal cortex (mPFC) of freely-moving rats using microdialysis. Idalopirdine (10mg/kg p.o.) increased extracellular levels of dopamine, noradrenaline and glutamate in the mPFC and showed a trend to increase serotonin levels. No effect was observed on acetylcholine levels. The AChEI donepezil (1.3mg/kg s.c.) significantly increased the levels of acetylcholine. Pretreatment with idalopirdine 2h prior to donepezil administration potentiated the effect of donepezil on extracellular acetylcholine levels. The idalopirdine potentiation of donepezil-induced increase in acetylcholine levels was also observed during local infusion of idalopirdine (6µg/ml) into the mPFC by reverse dialysis. The data from the current study may provide a mechanistic model for the pro-cognitive effects observed with administration of idalopirdine in donepezil-treated patients with Alzheimer's disease observed in the phase 2 studies (Wilkinson et al. 2014).


Assuntos
Acetilcolina/metabolismo , Benzilaminas/farmacologia , Monoaminas Biogênicas/metabolismo , Espaço Extracelular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Indóis/farmacologia , Córtex Pré-Frontal/citologia , Receptores de Serotonina/metabolismo , Animais , Espaço Extracelular/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia
3.
J Pharmacol Exp Ther ; 358(3): 472-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402279

RESUMO

Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine's ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine's effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine's pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine's moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine's cognitive effects, which are observed under chronic dosing conditions in patients with MDD.


Assuntos
Acetilcolina/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Espaço Extracelular/efeitos dos fármacos , Hipocampo/patologia , Piperazinas/farmacologia , Escopolamina/farmacologia , Sulfetos/farmacologia , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Espaço Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Piperazinas/uso terapêutico , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Social , Sulfetos/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Vortioxetina
4.
Artigo em Inglês | MEDLINE | ID: mdl-26945513

RESUMO

Vortioxetine is a novel multimodal antidepressant that acts as a serotonin (5-HT)3, 5-HT7, and 5-HT1D receptor antagonist; 5-HT1B receptor partial agonist; 5-HT1A receptor agonist; and 5-HT transporter inhibitor in vitro. In preclinical and clinical studies vortioxetine demonstrates positive effects on cognitive dysfunction. Vortioxetine's effect on cognitive function likely involves the modulation of several neurotransmitter systems. Acute and chronic administration of vortioxetine resulted in changes in histamine concentrations in microdialysates collected from the rat prefrontal cortex and ventral hippocampus. Based on these results and a literature review of the current understanding of the interaction between the histaminergic and serotonergic systems and the role of histamine on cognitive function, we hypothesize that vortioxetine through an activation of the orexinergic system stimulates the tuberomammilary nucleus and enhances histaminergic neurotransmission, which contributes to vortioxetine's positive effects on cognitive function.


Assuntos
Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Histamina/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Orexinas/efeitos dos fármacos , Piperazinas/farmacologia , Serotoninérgicos/farmacologia , Sulfetos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Vortioxetina
5.
Biol Psychiatry ; 80(1): 12-22, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831917

RESUMO

BACKGROUND: The mechanisms underlying stress-induced inflammation that contribute to major depressive disorder are unknown. We examine the role of the adenosine triphosphate (ATP)/purinergic type 2X7 receptor (P2X7R) pathway and the NLRP3 (nucleotide-binding, leucine-rich repeat, pyrin domain containing 3) inflammasome in interleukin (IL)-1ß and depressive behavioral responses to stress. METHODS: The influence of acute restraint stress on extracellular ATP, glutamate, IL-1ß, and tumor necrosis factor alpha in hippocampus was determined by microdialysis, and the influence of acute restraint stress on the NLRP3 inflammasome was determined by western blot analysis. The influence of P2X7R antagonist administration on IL-1ß and tumor necrosis factor alpha and on anxiety and depressive behaviors was determined in the chronic unpredictable stress rodent model. The role of the NLRP3 inflammasome was determined by analysis of Nlrp3 null mice. RESULTS: Acute restraint stress rapidly increased extracellular ATP, an endogenous agonist of P2X7R; the inflammatory cytokine IL-1ß; and the active form of the NLRP3 inflammasome in the hippocampus. Administration of a P2X7R antagonist completely blocked the release of IL-1ß and tumor necrosis factor alpha, another stress-induced cytokine, and activated NLRP3. Moreover, P2X7R antagonist administration reversed the anhedonic and anxiety behaviors caused by chronic unpredictable stress exposure, and deletion of the Nlrp3 gene rendered mice resistant to development of depressive behaviors caused by chronic unpredictable stress. CONCLUSIONS: These findings demonstrate that psychological "stress" is sensed by the innate immune system in the brain via the ATP/P2X7R-NLRP3 inflammasome cascade, and they identify novel therapeutic targets for the treatment of stress-related mood disorders and comorbid illnesses.


Assuntos
Trifosfato de Adenosina/metabolismo , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anedonia/fisiologia , Animais , Ansiedade/etiologia , Ansiedade/imunologia , Depressão/etiologia , Depressão/imunologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Agonistas do Receptor Purinérgico P2Y/metabolismo , Antagonistas do Receptor Purinérgico P2Y/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Estresse Psicológico/imunologia
6.
CNS Spectr ; 21(2): 143-61, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26346726

RESUMO

The hippocampus plays an important role in emotional and cognitive processing, and both of these domains are affected in patients with major depressive disorder (MDD). Extensive preclinical research and the notion that modulation of serotonin (5-HT) neurotransmission plays a key role in the therapeutic efficacy of selective serotonin reuptake inhibitors (SSRIs) support the view that 5-HT is important for hippocampal function in normal and disease-like conditions. The hippocampus is densely innervated by serotonergic fibers, and the majority of 5-HT receptor subtypes are expressed there. Furthermore, hippocampal cells often co-express multiple 5-HT receptor subtypes that can have either complementary or opposing effects on cell function, adding to the complexity of 5-HT neurotransmission. Here we review the current knowledge of how 5-HT, through its various receptor subtypes, modulates hippocampal output and the activity of hippocampal pyramidal cells in rodents. In addition, we discuss the relevance of 5-HT modulation for cognitive processing in rodents and possible clinical implications of these results in patients with MDD. Finally, we review the data on how SSRIs and vortioxetine, an antidepressant with multimodal activity, affect hippocampal function, including cognitive processing, from both a preclinical and clinical perspective.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/metabolismo , Hipocampo/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/metabolismo , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/metabolismo , Humanos , Células Piramidais/metabolismo , Receptores de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Transmissão Sináptica
7.
ACS Chem Neurosci ; 6(7): 970-86, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746856

RESUMO

It has been known for several decades that serotonergic neurotransmission is a key regulator of cognitive function, mood, and sleep. Yet with the relatively recent discoveries of novel serotonin (5-HT) receptor subtypes, as well as an expanding knowledge of their expression level in certain brain regions and localization on certain cell types, their involvement in cognitive processes is still emerging. Of particular interest are cognitive processes impacted in neuropsychiatric and neurodegenerative disorders. The prefrontal cortex (PFC) is critical to normal cognitive processes, including attention, impulsivity, planning, decision-making, working memory, and learning or recall of learned memories. Furthermore, serotonergic dysregulation within the PFC is implicated in many neuropsychiatric disorders associated with prominent symptoms of cognitive dysfunction. Thus, it is important to better understand the overall makeup of serotonergic receptors in the PFC and on which cell types these receptors mediate their actions. In this Review, we focus on 5-HT receptor expression patterns within the PFC and how they influence cognitive behavior and neurotransmission. We further discuss the net effects of vortioxetine, an antidepressant acting through multiple serotonergic targets given the recent findings that vortioxetine improves cognition by modulating multiple neurotransmitter systems.


Assuntos
Cognição/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores de Serotonina/metabolismo , Animais , Antidepressivos/farmacologia , Cognição/efeitos dos fármacos , Humanos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Piperazinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sulfetos/farmacologia , Vortioxetina
8.
J Pharm Biomed Anal ; 100: 357-364, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200427

RESUMO

Quantification of amino acid based neurotransmitters in extracellular fluids, such as those in the neuron synapse, presents a challenge to the analytical chemistry because of the absence of UV- or fluorescence-detectable functional groups and the low sensitivity in mass spectrometric detection. This report describes a novel use of the succinimide reagent, N-α-Boc-l-tryptophan hydroxysuccinimide ester (Boc-TRP), for the pre-column derivatization to simultaneously quantify multiple neurotransmitters in the rat brain microdialysis samples. The Boc-TRP derivatization was rapid and quantitative in phosphate the buffer (pH 7.4) at room temperature. The derivatized neurotransmitters were suitable for rapid LC/MS quantification with less than 3-min chromatographic separation. The Boc-group in the derivatized product generated unique fragmentation patterns in the triple quadrupole mass spectrometric analysis under Multiple Reaction Monitoring mode and significantly increased the specificity and sensitivity. The derivatization and rapid LC/MS quantification method developed in this study showed a linear dynamic range from single digit nM to 1000nM with coefficient greater than 0.990. At the LOQ, the accuracy ranged from 95 to 108% and the precision (CV%) was less than 20%. Since there was no concentration and reconstitution in the sample workup process, this derivatization approach simplified the neurotransmitter quantification of the brain microdialysis samples.


Assuntos
Aminoácidos/metabolismo , Encéfalo/metabolismo , Catecolaminas/metabolismo , Líquido Cefalorraquidiano/metabolismo , Cromatografia de Fase Reversa , Microdiálise , Serotonina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Animais , Calibragem , Cromatografia de Fase Reversa/normas , Concentração de Íons de Hidrogênio , Limite de Detecção , Modelos Lineares , Ratos , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/normas , Succinimidas/química , Fatores de Tempo , Triptofano/análogos & derivados , Triptofano/química
9.
ACS Med Chem Lett ; 5(2): 119-23, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900783

RESUMO

LSP1-2111 is a group III metabotropic glutamate receptor agonist with preference toward the mGlu4 receptor subtype. This compound has been extensively used as a tool to explore the pharmacology of mGlu4 receptor activation in preclinical animal behavioral models. However, the blood-brain barrier penetration of this amino acid derivative has never been studied. We report studies on the central nervous system (CNS) disposition of LSP1-2111 using quantitative microdialysis in rat. Significant unbound concentrations of the drug relative to its in vitro binding affinity and functional potency were established in extracellular fluid (ECF). These findings support the use of LSP1-2111 to study the CNS pharmacology of mGlu4 receptor activation through orthosteric agonist mechanisms.

10.
Eur Neuropsychopharmacol ; 24(1): 148-59, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24284262

RESUMO

Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore investigated these effects in 5-HT depleted rats. Four injections of the irreversible tryptophan hydroxylase inhibitor 4-chloro-dl-phenylalanine methyl ester hydrochloride (PCPA, 86mg/kg, s.c.) induced 5-HT depletion, as measured in hippocampal homogenate and microdialysate. The effects of acute challenge with vortioxetine or the 5-HT releaser fenfluramine on extracellular 5-HT were measured in PCPA-treated and control rats. PCPA's effects on NOR and spontaneous alternation (SA) performance were assessed along with the effects of acute treatment with 5-hydroxy-l-tryptophan (5-HTP), vortioxetine, the selective 5-HT reuptake inhibitor escitalopram, or the 5-HT norepinephrine reuptake inhibitor duloxetine. SERT occupancies were estimated by ex vivo autoradiography. PCPA depleted central 5-HT by >90% in tissue and microdialysate, and impaired NOR and SA performance. Restoring central 5-HT with 5-HTP reversed these deficits. At similar SERT occupancies (>90%) vortioxetine, but not escitalopram or duloxetine, restored memory performance. Acute fenfluramine significantly increased extracellular 5-HT in control and PCPA-treated rats, while vortioxetine did so only in control rats. Thus, vortioxetine restores 5-HT depletion impaired memory performance in rats through one or more of its receptor activities.


Assuntos
Citalopram/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Serotonina/deficiência , Sulfetos/uso terapêutico , Tiofenos/uso terapêutico , 5-Hidroxitriptofano/administração & dosagem , Animais , Carbidopa/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Cloridrato de Duloxetina , Comportamento Exploratório/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Long-Evans , Reconhecimento Psicológico/efeitos dos fármacos , Vortioxetina
11.
Biol Psychiatry ; 69(1): 12-8, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20965497

RESUMO

BACKGROUND: Nicotine improves cognition in humans and animal models of neuropsychiatric disorders. Here, we sought to establish whether selective stimulation of the neuronal nicotinic α7 receptor could improve spatial working memory in nonhuman primates. METHODS: Beginning with an estimated dose range from rodent studies, the dose of the α7 agonist AZD0328 was titrated for a significant impact on working memory in rhesus macaques after acute administration. After training to stability on the spatial delayed response task, subjects were administered AZD0328 (1.6 ng/kg-.48 mg/kg; intramuscular) or vehicle 30 min before cognitive testing. AZD0328 (1 ng/kg-1.0 µg/kg; intramuscular) was then administered in a repeated, intermittent ascending dose regimen where each dose was given in two bouts for 4 days with a 1-week washout in between bouts, followed by 2-week washout. RESULTS: Acute AZD0328 improved cognitive performance when the dose was titrated down to .0016 and .00048 mg/kg from a cognitively impairing dose of .48 mg/kg. In a subgroup, sustained enhancement of working memory was evident for 1 month or more after acute treatment. Immediate and sustained cognitive enhancement was also found during and after repeated administration of AZD0328 at .001 mg/kg. CONCLUSIONS: These findings demonstrate that extremely low doses of a nicotinic α7 agonist can have profound acute and long-lasting beneficial consequences for cognition, dependent upon the integrity of dorsolateral prefrontal cortex. Thus, the α7 receptor might have a fundamental role in the neural circuitry of working memory and in the synaptic plasticity upon which it might depend.


Assuntos
Furanos/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Nootrópicos/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Quinuclidinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Feminino , Furanos/administração & dosagem , Furanos/farmacocinética , Injeções Intramusculares , Macaca mulatta , Masculino , Nootrópicos/administração & dosagem , Nootrópicos/farmacocinética , Quinuclidinas/administração & dosagem , Quinuclidinas/farmacocinética , Receptor Nicotínico de Acetilcolina alfa7
12.
Pharmacol Biochem Behav ; 94(1): 163-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19698740

RESUMO

Although our lab, as well as several others, has demonstrated a role for corticosterone in cocaine self-administration, there are no studies of the central dynamics of this hormone over the course of a behavioral session when rats are self-administering cocaine or receiving passive injections. The assay of corticosterone in microdialysates collected during such sessions allows for determinations of changes in brain corticosterone during drug-taking behavior. By using the combination of microdialysis in terminal fields for the mesocorticolimbic dopaminergic system and the yoked-triad model, one can distinguish between the direct cocaine-induced activation of the hypothalamo-pituitary-adrenal (HPA) axis from the activation of the HPA axis related to drug-taking. In these experiments, we measured corticosterone in microdialysis samples collected from probes aimed at the medial prefrontal cortex, nucleus accumbens and basolateral amygdala in rats self-administering cocaine and receiving identical, passive infusions of cocaine or saline. While corticosterone was increased in all three brain regions in rats receiving cocaine, medial prefrontal cortex corticosterone was increased significantly more in rats receiving non-contingent infusions of the drug compared to rats self-administering cocaine. The results of these experiments demonstrate that control over drug delivery can affect the influence of a hormonal input on the functional characteristics of specific anatomical projections of the central nervous system. These results also provide evidence of the role steroid hormones play in shaping the functional activity of the brain.


Assuntos
Tonsila do Cerebelo/química , Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Corticosterona/análise , Núcleo Accumbens/química , Córtex Pré-Frontal/química , Hormônio Adrenocorticotrópico/sangue , Animais , Cocaína/administração & dosagem , Condicionamento Operante , Corticosterona/sangue , Infusões Intravenosas , Masculino , Microdiálise , Especificidade de Órgãos , Ratos , Ratos Wistar , Reforço Psicológico , Autoadministração , Fatores de Tempo
13.
Biochem Pharmacol ; 78(7): 880-8, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19615981

RESUMO

AZD0328, a novel spirofuropyridine neuronal nicotinic receptor partial agonist, was used to investigate the role of alpha7 neuronal nicotinic receptor (NNR) activation in the modulation of midbrain dopamine neuron function, cortical dopamine release and on two behavioral tasks known to be dependent on optimal levels of cortical dopamine. In vivo recordings from area 10 (ventral tegmental area) in rat brain showed an increased firing of putative dopamine neurons in response to low (0.00138 mg/kg) doses of AZD0328. Bursting patterns of dopamine neuron activity remained largely unchanged by application of AZD0328. In vivo microdialysis in awake rats showed an increase in extracellular prefrontal cortical dopamine in response to low doses of AZD0328. Compound-stimulated dopamine release showed an inverted dose effect relation that was maximal at the lowest dose tested (0.00178 mg/kg). Peak extracellular dopamine levels were reached 2h after dosing with AZD0328. Acquisition of operant responding with delayed reinforcement in rats was dose dependently enhanced by AZD0328 with a plateau effect measured at 0.003 mg/kg. This effect was blocked by pre-treatment of animals with the selective alpha7 antagonist methyllycaconitine. AZD0328 improved novel object recognition in mice over a broad range of doses (0.00178-1.78 mg/kg) and the compound effect was found to be absent in homozygous alpha7 KO animals. Together, these data indicate that selective interaction with alpha7 NNRs by AZD0328 selectively enhances midbrain dopaminergic neuronal activity causing an enhancement of cortical dopamine levels; these neurochemical changes likely, underlie the positive behavioral responses observed in two different animal models. Our results suggest selective alpha7 NNR agonists may have significant therapeutic utility in neurologic and psychiatric indications where cognitive deficits and dopamine neuron dysfunction co-exist.


Assuntos
Atenção/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Dopamina/metabolismo , Furanos/farmacologia , Aprendizagem/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Quinuclidinas/farmacologia , Receptores Nicotínicos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Linhagem Celular , Córtex Cerebral/metabolismo , Condicionamento Operante/efeitos dos fármacos , Feminino , Humanos , Masculino , Neurônios/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Reforço Psicológico , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
14.
Synapse ; 57(4): 202-12, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15986362

RESUMO

Recent evidence suggests an important role for corticotropin-releasing hormone (CRH) and CRH receptors in cocaine reinforcement. CRH receptor antagonists reduce cocaine self-administration and attenuate the reinstatement of extinguished cocaine-seeking behavior, but little is known about the mechanisms involved. One possible mechanism for these effects may involve the cocaine-induced activation of CRH located in brain regions outside of the hypothalamus. CRH has been shown to increase dopaminergic transmission in regions relevant for cocaine reinforcement, such as the medial prefrontal cortex and the nucleus accumbens. Here, we report that CP-154,526, a CRH1-receptor antagonist, actually enhances cocaine-induced increases in dopamine overflow in the medial prefrontal cortex, measured using in vivo microdialysis. In contrast, the receptor antagonist did not alter cocaine-induced increases in dopamine in most of the nucleus accumbens, except for the most rostral part. These data suggest a surprising role for prefrontal cortex dopamine in the ability of CRH-receptor antagonists to attenuate cocaine seeking in rats.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Animais , Cromatografia Líquida de Alta Pressão , Hormônio Liberador da Corticotropina/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Masculino , Microdiálise , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Wistar
15.
Psychoneuroendocrinology ; 29(10): 1223-8, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15288701

RESUMO

We have been investigating the effects of ketoconazole on cocaine reward in rats for several years now. However, we recently confirmed that ketoconazole-induced changes in cocaine self-administration and reinstatement do not always correspond with decreases in plasma corticosterone, which suggests that other mechanisms must be underlying the behavioral effects that we observe. This experiment was therefore designed to determine the effects of acute, repeated and chronic ketoconazole administration on corticotropin-releasing hormone (CRH) content in hypothalamic and extra-hypothalamic brain sites in rats following the same dosing regimen that we use in our behavioral studies. Although ketoconazole significantly increased the concentration of ACTH in trunk blood, there were no significant effects on plasma cortisol, corticosterone or testosterone. There was also a significant increase in CRH content in the median eminence after the acute administration of ketoconazole that just failed to reach statistical significance following repeated or chronic administration. However, acute, repeated and chronic treatment with ketoconazole each significantly increased CRH content in the medial prefrontal cortex (MPC), but did not consistently affect the peptide in any other brain region studied. Since the MPC and CRH have been implicated in the neurobiology of cocaine, CRH-induced alterations in dopaminergic neurotransmission may play an important role in this peptide's effects on cocaine responsiveness. Taken together with the results from previous studies, these data suggest that ketoconazole may affect cocaine reward, at least in part, through interactions with dopamine and CRH within the MPC.


Assuntos
Hormônio Liberador da Corticotropina/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Cetoconazol/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Análise de Variância , Animais , Antidepressivos/farmacologia , Comportamento Apetitivo/efeitos dos fármacos , Cocaína/administração & dosagem , Hormônio Liberador da Corticotropina/metabolismo , Dopamina/metabolismo , Esquema de Medicação , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA