Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cells ; 7(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544931

RESUMO

Iron is an essential co-factor for several metabolic processes, including the Krebs cycle and mitochondrial oxidative phosphorylation. Therefore, maintaining an appropriate iron balance is essential to ensure sufficient energy production and to avoid excessive reactive oxygen species formation. Iron overload impairs mitochondrial fitness; however, little is known about the associated metabolic changes. Here we aimed to characterize the metabolic signature triggered by dietary iron overload over time in a mouse model, where mice received either a standard or a high-iron diet. Metabolic profiling was assessed in blood, plasma and liver tissue. Peripheral blood was collected by means of volumetric absorptive microsampling (VAMS). Extracted blood and tissue metabolites were analyzed by liquid chromatography combined to high resolution mass spectrometry. Upon dietary iron loading we found increased glucose, aspartic acid and 2-/3-hydroxybutyric acid levels but low lactate and malate levels in peripheral blood and plasma, pointing to a re-programming of glucose homeostasis and the Krebs cycle. Further, iron loading resulted in the stimulation of the urea cycle in the liver. In addition, oxidative stress was enhanced in circulation and coincided with increased liver glutathione and systemic cysteine synthesis. Overall, iron supplementation affected several central metabolic circuits over time. Hence, in vivo investigation of metabolic signatures represents a novel and useful tool for getting deeper insights into iron-dependent regulatory circuits and for monitoring of patients with primary and secondary iron overload, and those ones receiving iron supplementation therapy.

2.
Clin Chim Acta ; 486: 320-328, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30114408

RESUMO

BACKGROUND: Plasma and serum are the most widely used matrices in clinical studies. However, some variability in absolute concentrations of metabolites are likely to be observed in these collection tubes matrices. METHODS: We analyzed 189 metabolites using the same protocol for quantitative targeted metabolomics (LC-MS/MS AbsoluteIDQ p180 Kit Biocrates) in three types of samples, serum, plasma EDTA and citrate, of 80 subjects from the Cooperative Health Research In South Tyrol cohort (40 healthy elderly and 40 healthy young). RESULTS: The concentration levels were higher in serum than citrate and EDTA, in particular for amino acids and biogenic amines. The average Pearson's correlation coefficients were however always higher than 0.7 for these two classes of metabolites. We could also demonstrate that blank EDTA vacutainer tubes contain a significant amount of sarcosine. Finally, we compared the metabolome of young people against elderly subjects and found that the highest number of metabolites significantly changing with age was detected in serum. CONCLUSION: Serum samples provide higher sensitivity for biomarker discovery studies. Due to the presence of spurious amount of sarcosine in vacutainer EDTA tubes, plasma EDTA is not suitable for studies requiring accurate quantification of sarcosine.


Assuntos
Coleta de Amostras Sanguíneas , Contaminação de Equipamentos , Metabolômica , Sarcosina/análise , Sarcosina/sangue , Aminas/metabolismo , Biomarcadores/sangue , Cromatografia Líquida , Ácido Cítrico/química , Ácido Edético/química , Humanos , Espectrometria de Massas em Tandem
3.
Anal Bioanal Chem ; 409(26): 6263-6276, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815270

RESUMO

Volumetric absorptive microsampling (VAMS) is a novel approach that allows single-drop (10 µL) blood collection. Integration of VAMS with mass spectrometry (MS)-based untargeted metabolomics is an attractive solution for both human and animal studies. However, to boost the use of VAMS in metabolomics, key pre-analytical questions need to be addressed. Therefore, in this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. We first evaluated the best extraction procedure for the polar metabolome and found that the highest number and amount of metabolites were recovered upon extraction with acetonitrile/water (70:30). In contrast, basic conditions (pH 9) resulted in divergent metabolite profiles mainly resulting from the extraction of intracellular metabolites originating from red blood cells. In addition, the prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but once the VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months. The time used for drying the sample did also affect the metabolome. In fact, some metabolites were rapidly degraded or accumulated in the sample during the first 48 h at room temperature, indicating that a longer drying step will significantly change the concentration in the sample. Graphical abstract Volumetric absorptive microsampling (VAMS) is a novel technology that allows single-drop blood collection and, in combination with mass spectrometry (MS)-based untargeted metabolomics, represents an attractive solution for both human and animal studies. In this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. The latter revealed that prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but if VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Preservação de Sangue/métodos , Teste em Amostras de Sangue Seco/métodos , Humanos , Metaboloma , Fluxo de Trabalho
4.
J Transl Med ; 13: 348, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26541195

RESUMO

The Cooperative Health Research In South Tyrol (CHRIS) study is a population-based study with a longitudinal lookout to investigate the genetic and molecular basis of age-related common chronic conditions and their interaction with life style and environment in the general population. All adults of the middle and upper Vinschgau/Val Venosta are invited, while 10,000 participants are anticipated by mid-2017. Family participation is encouraged for complete pedigree reconstruction and disease inheritance mapping. After a pilot study on the compliance with a paperless assessment mode, computer-assisted interviews have been implemented to screen for conditions of the cardiovascular, endocrine, metabolic, genitourinary, nervous, behavioral, and cognitive system. Fat intake, cardiac health, and tremor are assessed instrumentally. Nutrient intake, physical activity, and life-course smoking are measured semi-quantitatively. Participants are phenotyped for 73 blood and urine parameters and 60 aliquots per participant are biobanked (cryo-preserved urine, DNA, and whole and fractionated blood). Through liquid-chromatography mass-spectrometry analysis, metabolite profiling of the mitochondrial function is assessed. Samples are genotyped on 1 million variants with the Illumina HumanOmniExpressExome array and the first data release including 4570 fully phenotyped and genotyped samples is now available for analysis. Participants' follow-up is foreseen 6 years after the first visit. The target population is characterized by long-term social stability and homogeneous environment which should both favor the identification of enriched genetic variants. The CHRIS cohort is a valuable resource to assess the contribution of genomics, metabolomics, and environmental factors to human health and disease. It is awaited that this will result in the identification of novel molecular targets for disease prevention and treatment.


Assuntos
Predisposição Genética para Doença , Nível de Saúde , Estilo de Vida , Adolescente , Adulto , Idoso , Bancos de Espécimes Biológicos , Proteínas Sanguíneas/metabolismo , Meio Ambiente , Ética Médica , Exoma , Feminino , Seguimentos , Genótipo , Humanos , Itália/epidemiologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Seleção de Pacientes , Linhagem , Fenótipo , Projetos Piloto , Projetos de Pesquisa , Software , Inquéritos e Questionários , Urinálise , Adulto Jovem
5.
Nucleic Acids Res ; 31(24): e155, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14654708

RESUMO

A new MALDI-TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3'-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Primers do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Estabilidade Enzimática , Genótipo , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Análise de Sequência de DNA/economia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA