Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JBMR Plus ; 7(6): e10746, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283651

RESUMO

The L-enantiomer of ß-aminoisobutyric acid (BAIBA) is secreted by contracted muscle in mice, and exercise increases serum levels in humans. In mice, L-BAIBA reduces bone loss with unloading, but whether it can have a positive effect with loading is unknown. Since synergism can be more easily observed with sub-optimal amounts of factors/stimulation, we sought to determine whether L-BAIBA could potentiate the effects of sub-optimal loading to enhance bone formation. L-BAIBA was provided in drinking water to C57Bl/6 male mice subjected to either 7 N or 8.25 N of sub-optimal unilateral tibial loading for 2 weeks. The combination of 8.25 N and L-BAIBA significantly increased the periosteal mineral apposition rate and bone formation rate compared to loading alone or BAIBA alone. Though L-BAIBA alone had no effect on bone formation, grip strength was increased, suggesting a positive effect on muscle function. Gene expression analysis of the osteocyte-enriched bone showed that the combination of L-BAIBA and 8.25 N induced the expression of loading-responsive genes such as Wnt1, Wnt10b, and the TGFb and BMP signaling pathways. One dramatic change was the downregulation of histone genes in response to sub-optimal loading and/or L-BAIBA. To determine early gene expression, the osteocyte fraction was harvested within 24 hours of loading. A dramatic effect was observed with L-BAIBA and 8.25 N loading as genes were enriched for pathways regulating the extracellular matrix (Chad, Acan, Col9a2), ion channel activity (Scn4b, Scn7a, Cacna1i), and lipid metabolism (Plin1, Plin4, Cidec). Few changes in gene expression were observed with sub-optimal loading or L-BAIBA alone after 24 hours. These results suggest that these signaling pathways are responsible for the synergistic effects between L-BAIBA and sub-optimal loading. Showing that a small muscle factor can enhance the effects of sub-optimal loading of bone may be of relevance for individuals unable to benefit from optimal exercise. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
Mol Cell Endocrinol ; 513: 110817, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32439416

RESUMO

The Osteocyte, recognized as a major orchestrator of osteoblast and osteoclast activity, is the most important key player during bone remodeling processes. Imbalances occurring during bone remodeling, caused by hormone perturbations or by mechanical loading alterations, can induce bone pathologies such as osteoporosis. Recently, the active fraction of parathormone, PTH (1-34) or Teriparatide (TPTD), was chosen as election treatment for osteoporosis. The effect of such therapy is dependent on the temporal manner of administration. The molecular reasons why the type of administration regimen is so critical for the fate of bone remodeling are numerous and not yet well known. Our study attempts to analyze diverse signaling pathways directly activated in osteocytes upon TPTD treatment. By means of gene array analysis, we found many molecules upregulated or downregulated in osteocytes. Later, we paid attention to Wisp-2, a protein involved in the Wnt pathway, that is secreted by MLO-Y4 cells and increases upon TPTD treatment and that is able to positively influence the early phases of osteogenic differentiation. We also confirmed the pro osteogenic property of Wisp-2 during mesenchymal stem cell differentiation into the preliminary osteoblast phenotype. The same results were confirmed with an in vivo approach confirming a remarkable Wisp-2 expression in metaphyseal trabecular bone. These results highlighted the anabolic roles unrolled by osteocytes in controlling the action of neighboring cells, suggesting that the perturbation of certain signaling cascades, such as the Wnt pathway, is crucial for the positive regulation of bone formation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Osteoblastos/efeitos dos fármacos , Teriparatida/farmacologia , Animais , Remodelação Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Osteoblastos/fisiologia , Osteócitos/efeitos dos fármacos , Osteócitos/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ratos , Ratos Sprague-Dawley
3.
J Anat ; 231(6): 823-834, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28925539

RESUMO

Hitherto, the role of the osteocyte as transducer of mechanical stimuli into biological signals is far from settled. In this study, we used an appropriate model represented by the cortex of Xenopus laevis long bone diaphysis lacking (unlike the mammalian one) of vascular structures and containing only osteocytes inside the bone matrix. These structural features allow any change of protein profile that might be observed upon different experimental conditions, such as bone adaptation to stress/mechanical loading, to be ascribed specifically to osteocytes. The study was conducted by combining ultrastructural observations and two-dimensional electrophoresis for proteomic analysis. The osteocyte population was extracted from long bones of lower limbs of amphibian skeletons after different protocols (free and forced swimming). The experiments were performed on 210 frogs subdivided into five trials, each including free swimming frogs (controls) and frogs submitted to forced swimming (stressed). The stressed groups were obliged to swim (on movable spheres covering the bottom of a pool on a vibrating plate) continuously for 8 h, and killed 24 h later along with the control groups. Long bones free of soft tissues (periosteum, endosteum and bone marrow), as well as muscles of posterior limbs, were processed and analyzed for proteins differentially expressed or phosphorylated between the two sample groups. The comparative analysis showed that protein phosphorylation profiles differ between control and stressed groups. In particular, we found in long bones of stressed samples that both Erk1/2 and Akt are hyperphosphorylated; moreover, the different phosphorylation of putative Akt substrates (recognized by specific Akt phosphosubstrates-antibody) in stressed vs. control samples clearly demonstrated that Akt signaling is boosted by forced swimming (leading to an increase of mechanical stress) of amphibian long bones. In parallel, we found in posterior limb muscles that the expression of heat shock protein HSP27 and HSP70 stress markers increased upon the forced swimming condition. Because the cortexes of frog long bones are characterized by the presence of only osteocytes, all our results establish the suitability of the X. laevis animal model to study the bone response to stress conditions mediated by this cell type and pave the way for further analysis of the signaling pathways involved in these signal transduction mechanisms.


Assuntos
Osso e Ossos/fisiologia , Modelos Animais , Osteócitos/fisiologia , Xenopus laevis/fisiologia , Animais , Proteômica , Estresse Mecânico
4.
Biomedicines ; 5(2)2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621746

RESUMO

Osseointegration of a titanium implant is still an issue in dental/orthopedic implants durable over time. The good integration of these implants is mainly due to their surface and topography. We obtained an innovative titanium surface by shooting different-in-size particles of Al2O3 against the titanium scaffolds which seems to be ideal for bone integration. To corroborate that, we used two different cell lines: MLO-Y4 (murine osteocytes) and 293 (human fibroblasts) and tested the titanium scaffolds untreated and treated (i.e., Al2O3 shot-peened titanium surfaces). Distribution, density, and expression of adhesion molecules (fibronectin and vitronectin) were evaluated under scanning electron microscope (SEM) and confocal microscope (CM). DAPI and fluorochrome-conjugated antibodies were used to highlight nuclei, fibronectin, and vitronectin, under CM; cell distribution was analyzed after gold-palladium sputtering of samples by SEM. The engineered biomaterial surfaces showed under SEM irregular morphology displaying variously-shaped spicules. Both SEM and CM observations showed better outcome in terms of cell adhesion and distribution in treated titanium surfaces with respect to the untreated ones. The results obtained clearly showed that this kind of surface-treated titanium, used to manufacture devices for dental implantology: (i) is very suitable for cell colonization, essential prerequisite for the best osseointegration, and (ii) represents an excellent solution for the development of further engineered implants with the target to obtain recovery of stable dental function over time.

5.
Biomedicines ; 6(1)2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29295590

RESUMO

Recovering of significant skeletal defects could be partially abortive due to the perturbations that affect the regenerative process when defects reach a critical size, thus resulting in a non-healed bone. The current standard treatments include allografting, autografting, and other bone implant techniques. However, although they are commonly used in orthopedic surgery, these treatments have some limitations concerning their costs and their side effects such as potential infections or malunions. On this account, the need for suitable constructs to fill the gap in wide fractures is still urgent. As an innovative solution, scleral ossicles (SOs) can be put forward as natural scaffolds for bone repair. SOs are peculiar bony plates forming a ring at the scleral-corneal border of the eyeball of lower vertebrates. In the preliminary phases of the study, these ossicles were structurally and functionally characterized. The morphological characterization was performed by SEM analysis, MicroCT analysis and optical profilometry. Then, UV sterilization was carried out to obtain a clean support, without neither contaminations nor modifications of the bone architecture. Subsequently, the SO biocompatibility was tested in culture with different cell lines, focusing the attention to the differentiation capability of endothelial and osteoblastic cells on the SO surface. The results obtained by the above mentioned analysis strongly suggest that SOs can be used as bio-scaffolds for functionalization processes, useful in regenerative medicine.

6.
Anat Rec (Hoboken) ; 300(7): 1208-1218, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27981785

RESUMO

Post-traumatic shoulder instability is a frequent condition in active population, representing one of most disabling pathologies, due to altered balance involving joints. No data are so far available on early ultrastructural osteo-chondral damages, associated with the onset of invalidating pathologies, like osteoarthritis-OA. Biopsies of glenoid articular cartilage and sub-chondral bone were taken from 10 adult patients underwent arthroscopic stabilization. Observations were performed under Transmission Electron Microscopy-TEM in tangential, arcuate and radial layers of the articular cartilage and in the sub-chondral bone. In tangential and arcuate layers chondrocytes display normal and very well preserved ultrastructure, probably due to the synovial liquid supply; otherwise, throughout the radial layer (un-calcified and calcified) chondrocytes show various degrees of degeneration; occasionally, in the radial layer evidences of apoptosis/autophagy were also observed. Concerning sub-chondral bone, osteocytes next to the calcified cartilage also show signs of degeneration, while osteocytes farther from the osteo-chondral border display normal ultrastructure, probably due to the bone vascular supply. The ultrastructural features of the osteo-chondral complex are not age-dependent. This study represents the first complete ultrastructural investigation of the articular osteo-chondral complex in shoulder instability, evaluating the state of preservation/viability of both chondrocytes and osteocytes throughout the successive layers of articular cartilage and sub-chondral bone. Preliminary observations here collected represent the morphological basis for further deepening of pathogenesis related to shoulder instability, enhancing the relationship between cell shape and microenvironment; in particular, they could be useful in understanding if the early surgical treatment in shoulder instability could avoid the onset of OA. Anat Rec, 300:1208-1218, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Osso e Ossos/ultraestrutura , Cartilagem Articular/ultraestrutura , Instabilidade Articular/patologia , Microscopia Eletrônica de Transmissão/métodos , Luxação do Ombro/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
J Anat ; 230(1): 75-84, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27523886

RESUMO

The timetable of effects on bone repair of the active fraction-parathyroid hormone, PTH(1-34), was analytically investigated from the morphometric viewpoint in 3-month-old male Sprague-Dawley rats, whose femurs were drilled at mid-diaphyseal level (transcortical holes). The animals were divided into groups with/without PTH(1-34) administration, and sacrificed at different times (10, 28, 45 days after surgery). The observations reported here need to be framed in the context of our previous investigations regarding bone histogenesis (Ferretti et al. Anat Embryol. 2002; 206: 21-29) in which we demonstrated the occurrence of two successive bone-forming processes during both skeletal organogenesis and bone repair, i.e. static and dynamic osteogenesis: the former (due to stationary osteoblasts, haphazardly grouped in cords) producing preliminary bad quality trabecular bone, the latter (due to typical polarized osteoblasts organized in ordered movable laminae) producing mechanically valid bone tissue. The primary function of static osteogenesis is to provide a rigid scaffold containing osteocytes (i.e. mechano-sensors) for osteoblast laminae acting in dynamic osteogenesis. In the present work, histomorphometric analysis revealed that, already 10 days after drilling, despite the holes being temporarily filled by the same amount of newly formed trabecular bone by static osteogenesis independently of the treatment, the extent of the surface of movable osteoblast-laminae (covering the trabecular surface) was statistically higher in animals submitted to PTH(1-34) administration than in control ones; this datum strongly suggests the effect of PTH(1-34) alone in anticipating the occurrence of dynamic osteogenesis involved in the production of good quality bone (with more ordered collagen texture) more suitable for loading. This study could be crucial in further translational clinical research in humans for defining the best therapeutic strategies to be applied in recovering severe skeletal lesions, particularly as regards the time of PTH(1-34) administration.


Assuntos
Fêmur/efeitos dos fármacos , Fêmur/patologia , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/fisiologia , Fêmur/fisiologia , Masculino , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Cicatrização/fisiologia
8.
Biomed Res Int ; 2015: 304178, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064895

RESUMO

Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1) baseline, (2) normal diet for 4 weeks, (3) calcium-deprived diet for 4 weeks, and (4) calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34) 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis), an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis). Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.


Assuntos
Doenças Ósseas Metabólicas/fisiopatologia , Reabsorção Óssea/metabolismo , Cálcio/metabolismo , Osteoporose/metabolismo , Absorciometria de Fóton , Animais , Densidade Óssea , Reabsorção Óssea/fisiopatologia , Dieta , Fêmur/metabolismo , Fêmur/fisiopatologia , Homeostase , Humanos , Vértebras Lombares/metabolismo , Vértebras Lombares/fisiopatologia , Masculino , Osteoporose/fisiopatologia , Ratos
9.
J Anat ; 224(6): 659-68, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24689495

RESUMO

To study the expression level of a panel of pro/anti-apoptotic factors and inflammation-related receptors in chondral fragments from patients undergoing surgical treatment for intra-articular calcaneal fractures, cartilage fragments were retrieved from calcaneal fractures of 20 patients subjected to surgical treatment. Primary cultures were performed using chondral fragments from fractured and control patients. Chondrocyte cultures from each patient of the fractured and control groups were subjected to immunofluorescence staining and quantitatively analyzed under confocal microscopy. Proteins extracted from the cultured chondrocytes taken from the fractured and control groups were processed for Western blot experiments and densitometric analysis. The percentage of apoptotic cells was determined using the cleaved PARP-1 antibody. The proportion of labelled cells was 35% for fractured specimens, compared with 7% for control samples. Quantification of caspase-3 active and Bcl-2 proteins in chondrocyte cultures showed a significant increase of the apoptotic process in fractured specimens compared with control ones. Fractured chondrocytes were positively stained for ChemR23 with statistically significant differences with respect to control samples. Densitometric evaluation of the immunoreactive bands confirmed these observations. Human articular chondrocytes obtained from patients with intra-articular calcaneal fractures express higher levels of pivotal pro-apoptotic factors, and of the chemo-attractive receptor ChemR23, compared with control cultures. On the basis of these observations, the authors hypothesize that consistent prolonged chondrocyte death, associated with the persistence of high levels of pro-inflammatory factors, could enhance the deterioration of cartilage tissue with consequent development of post-traumatic arthritis following intra-articular bone fracture.


Assuntos
Apoptose/fisiologia , Calcâneo/lesões , Condrócitos/metabolismo , Fraturas Ósseas/metabolismo , Receptores de Quimiocinas/biossíntese , Adulto , Western Blotting , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Separação Celular , Células Cultivadas , Condrócitos/patologia , Feminino , Imunofluorescência , Fraturas Ósseas/patologia , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Regulação para Cima , Adulto Jovem
10.
Oncol Rep ; 31(1): 103-10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24220798

RESUMO

The aim of the present study was to determine whether BCL6 is expressed during malignant transformation of the large bowel and to assess whether, and to what extent, immunoreactivity is related to the different stages of neoplastic progression. Samples of normal colorectal mucosa (n=22), microadenomas (n=22) and colorectal cancer (n=22), were analyzed by immunohistochemistry, immunofluorescence coupled with confocal microscopy and western blotting. Our results clearly outlined the marked increase occurring in both intensity and density of BCL6 protein expression in the normal mucosa-microadenoma-carcinoma sequence. Immunohistochemistry and immunofluorescence analyses showed that BCL6 is expressed at low levels in normal mucosa and increases in microadenoma and in cancer with statistical significance. These results were confirmed by western blotting data. The increasing expression of BCL6 in human colorectal cancer development suggests the involvement of BCL6 in tumor progression, from the earliest stages of carcinogenesis with significant increase in cancer. The enhanced understanding of the biological role of BCL6, previously shown to exert a key role in lymphomagenesis, may lead to a re-evaluation of this protein and may highlight the importance of performing further studies in order to identify novel therapeutic targets for colorectal cancer.


Assuntos
Adenoma/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/biossíntese , Mucosa Intestinal/patologia , Intestino Grosso/patologia , Adenoma/imunologia , Biomarcadores Tumorais/biossíntese , Neoplasias Colorretais/imunologia , Proteínas de Ligação a DNA/imunologia , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Mucosa Intestinal/imunologia , Intestino Grosso/metabolismo , Microscopia Confocal , Proteínas Proto-Oncogênicas c-bcl-6
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA