Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Chem Biol Interact ; 391: 110901, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331334

RESUMO

The cell cycle includes two checkpoint arrests allowing to repair of damaged DNA. Many cancer cell lines exhibit weak G1 checkpoint mechanisms relying significantly more on the G2 checkpoint than do healthy cells. Inhibition of Myt1 kinase (PKMYT1), a forgotten member of the Wee family, cyclin-dependent kinase 1 (Cdk1) inhibitory kinase, target for G2 checkpoint abrogation, whose inhibition forces cells into premature unchecked mitosis resulting in cell death, is a promising concept for anticancer therapy. There are not many inhibitors of this emerging, potentially clinically important kinase. Herein, the valuable insight into structural features and binding mechanisms of diaminopyrimidines, aminoquinolines, quinazolines, pyrido[2,3-d]pyrimidines, pyrazolo[3,4-d]pyrimidines, and pyrrolo[2,3-b]quinoxalines, as well as finally made a general scheme of fragmented structures of Myt1 inhibitors with the enzyme, offer potential frameworks useful for future directions, for further chemical optimizations, in the discovery and the design of novel effective structures, potential therapeutics.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteína Quinase CDC2/metabolismo , Mitose , Pontos de Checagem da Fase G2 do Ciclo Celular , Pirimidinas/farmacologia , Neoplasias/metabolismo , Fosforilação , Proteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
2.
Chem Biol Interact ; 386: 110772, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898285

RESUMO

Having continued our recent study on the synthesis and DNase I inhibition of several monosquaramides, two new chloro-substituted pyridine squaramates were synthesized and their structure was identified by X-ray. Their inhibitory properties towards deoxyribonuclease I (DNase I) and xanthine oxidase (XO) were evaluated in vitro. 3-(((6-Chloropyridin-3-yl)methyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione (compound 3a) inhibited DNase I with an IC50 value of 43.82 ± 6.51 µM, thus standing out as one of the most potent small organic DNase I inhibitors tested to date. No cytotoxicity to human tumor cell lines (HL-60, MDA-MB-231 and MCF-7) was observed for the tested compounds. In order to investigate the drug-likeness of the squaramates, the ADME profile and pharmacokinetic properties were evaluated. Molecular docking was performed to reveal the binding mode of the studied compounds on DNase I.


Assuntos
Desoxirribonuclease I , Piridinas , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Piridinas/farmacologia , Desoxirribonuclease I/metabolismo , Estrutura Molecular , Inibidores Enzimáticos/química
3.
Chem Biol Interact ; 381: 110542, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37224992

RESUMO

A library of 43 thiazole derivatives, including 31 previously and 12 newly synthesized in the present study, was evaluated in vitro for their inhibitory properties against bovine pancreatic DNase I. Nine compounds (including three newly synthesized) inhibited the enzyme showing improved inhibitory properties compared to that of the reference crystal violet (IC50 = 346.39 µM). Two compounds (5 and 29) stood out as the most potent DNase I inhibitors, with IC50 values below 100 µM. The 5-LO inhibitory properties of the investigated derivatives were also analyzed due to the importance of this enzyme in the development of neurodegenerative diseases. Compounds (12 and 29) proved to be the most prominent new 5-LO inhibitors, with IC50 values of 60 nM and 56 nM, respectively, in cell-free assay. Four compounds, including one previously (41) and three newly (12, 29 and 30) synthesized, have the ability to inhibit DNase I with IC50 values below 200 µM and 5-LO with IC50 values below 150 nM in cell-free assay. Molecular docking and molecular dynamics simulations were used to clarify DNase I and 5-LO inhibitory properties of the most potent representatives at the molecular level. The newly synthesized compound 29 (4-((4-(3-bromo-4-morpholinophenyl)thiazol-2-yl)amino)phenol) represents the most promising dual DNase I and 5-LO inhibitor, as it inhibited 5-LO in the nanomolar and DNase I in the double-digit micromolar concentration ranges. The results obtained in the present study, together with our recently published results for 4-(4-chlorophenyl)thiazol-2-amines, represent a good basis for the development of new neuroprotective therapeutics based on dual inhibition of DNase I and 5-LO.


Assuntos
Fármacos Neuroprotetores , Tiazóis , Animais , Bovinos , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/química , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Araquidonato 5-Lipoxigenase , Desoxirribonuclease I , Inibidores de Lipoxigenase/farmacologia , Estrutura Molecular
4.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677597

RESUMO

Three new monosquaramides (3a-c) were synthesized, characterized by IR, NMR and X-ray, and evaluated for inhibitory activity against deoxyribonuclease I (DNase I) and xanthine oxidase (XO) in vitro. The target compounds inhibited DNase I with IC50 values below 100 µM, being at the same time more potent DNase I inhibitors than crystal violet, used as a positive control. 3-Ethoxy-4-((1-(pyridin-3-yl)propan-2-yl)amino)cyclobut-3-ene-1,2-dione (3c) stood out as the most potent compound, exhibiting a slightly better IC50 value (48.04 ± 7.98 µM) compared to the other two compounds. In order to analyze potential binding sites for the studied compounds with DNase I, a molecular docking study was performed. Compounds 3a-c are among the most potent small organic DNase I inhibitors tested to date.


Assuntos
Desoxirribonuclease I , Inibidores Enzimáticos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Xantina Oxidase
5.
Acta Chim Slov ; 69(3): 571-583, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36196811

RESUMO

Chemical modifications of natural monoterpenoids to various derivatives have been reported to result in enhancement of biological activities when compared to parent compounds. In this context a well-known biocide and food additive, carvacrol, served as a basic scaffold onto which a phenolic functionality transformation by introducing acyl groups was performed. By using this simple methodology, we obtained a small series of 25 esters. For each of the obtained compounds we have performed structural characterization, in vitro antimicrobial testing and in silico calculation of physico-chemical, pharmacokinetic and toxicological properties. Despite numerous data on the synthesis and bioactivity of carvacryl ester lower homologues, there are scarce data on esters with acid components higher than C9, so that among 25 compounds, 10 were reported for the first time (spectral characterization for 12 are herein the first reported). Our research is also the first comprehensive study of carvacryl esters antifungal and of medium/long chain fatty acid esters antibacterial activities. Interesting result is that all the synthesized esters, regardless the nature of the R residue, have shown activity on fungal strain Aspergilus niger and on yeast Candida albicans comparable to carvacrol. Besides presented experimental data, implementation of in silico calculation of physico-chemical, pharmacokinetic and toxicological properties on the prepared compounds, may be valuable information in further research.


Assuntos
Anti-Infecciosos , Desinfetantes , Antibacterianos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antifúngicos , Candida albicans , Cimenos , Ésteres/farmacologia , Ácidos Graxos , Aditivos Alimentares , Testes de Sensibilidade Microbiana , Monoterpenos/química , Monoterpenos/farmacologia , Fenóis , Timol
6.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565367

RESUMO

The post-transcriptional messenger RNA (mRNA) decay and turnover rate of the template-independent poly(A) tail, localized at the 3'-untranslated region (3'UTR) of mRNA, have been documented among subtle mechanisms of uncontrolled cancer tissue growth. The activity of Poly(A) deadenylase and the expression pattern of RNASEL have been examined. A total of 138 prostate tissue specimens from 46 PC patients (cancer specimens, corresponding adjacent surgically healthy tissues, and in their normal counterparts, at least 2 cm from carcinoma) were used. For the stratification prediction of healthy tissue transition into malignant phenotype, the enzyme activity of tumor-adjacent tissue was considered in relation to the presence of microfocal carcinoma. More than a four-times increase in specific enzyme activity (U/L g.prot) was registered in PC on account of both the dissociation of its inhibitor and genome reprogramming. The obtained ROC curve and Youden index showed that Poly(A) deadenylase identified PC with a sensitivity of 93.5% and a specificity of 94.6%. The RNASEL expression profile was raised significantly in PC, but the sensitivity was 40.5% and specificity was 86.9%. A significantly negative correlation between PC and control tissue counterparts with a higher expression pattern in lymphocyte-infiltrated samples were reported. In conclusion, significantly upregulated Poly(A) deadenylase activity may be a checkpoint for the transition of precancerous lesion to malignancy, while RNASEL may predict chronic inflammation.

7.
ChemMedChem ; 17(5): e202100694, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34994078

RESUMO

A library of 31 butyrylcholinesterase (BChE) and cathepsin B (CatB) inhibitors was screened in vitro for inhibition of deoxyribonuclease I (DNase I). Compounds 22, 8 and 7 are among the most potent synthetic non-peptide DNase I inhibitors reported to date. Three 8-hydroxyquinoline analogues inhibited both DNase I and BChE with IC50 values below 35 µM and 50 nM, respectively, while two nitroxoline derivatives inhibited DNase I and Cat B endopeptidase activity with IC50 values below 60 and 20 µM. Selected derivatives were screened for various co-target binding affinities at dopamine D2 and D3 , histamine H3 and H4 receptors and inhibition of 5-lipoxygenase. Compound 8 bound to the H3 receptor and is highlighted as the most promising multifunctional ligand with a favorable pharmacokinetic profile and one of the most potent non-peptide DNase I inhibitors. The present study demonstrates that 8-hydroxyquinoline is a structural fragment critical for DNase I inhibition in the presented series of compounds.


Assuntos
Butirilcolinesterase , Catepsina B , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Desoxirribonuclease I/química , Desoxirribonuclease I/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Oxiquinolina , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613950

RESUMO

The prototypic sensors for the induction of innate and adaptive immune responses are the Toll-like receptors (TLRs). Unusually high expression of TLRs in prostate carcinoma (PC), associated with less differentiated, more aggressive and more propagating forms of PC, changed the previous paradigm about the role of TLRs strictly in immune defense system. Our data reveal an entirely novel role of nucleic acids-sensing Toll-like receptors (NA-TLRs) in functional adaptation of malignant cells for supply and digestion of surrounding metabolic substrates from dead cells as specific mechanism of cancer cells survival, by corresponding ligands accelerated degradation and purine/pyrimidine salvage pathway. The spectrophotometric measurement protocols used for the determination of the activity of RNases and DNase II have been optimized in our laboratory as well as the enzyme-linked immunosorbent method for the determination of NF-κB p65 in prostate tissue samples. The protocols used to determine Dicer RNase, AGO2, TARBP2 and PIWIL4 were based on enzyme-linked immunosorbent assay. The amount of pre-existing acid-soluble oligonucleotides was measured and expressed as coefficient of absorbance. The activities of acid DNase II and RNase T2, and the activities of nucleases cleaving TLR3, TLR7/8 and TLR9 ligands (Poly I:C, poly U and unmethylated CpG), increased several times in PC, compared to the corresponding tumor adjacent and control tissue, exerting very high sensitivity and specificity of above 90%. Consequently higher levels of hypoxanthine and NF-κB p65 were reported in PC, whereas the opposite results were observed for miRNA biogenesis enzyme (Dicer RNase), miRNA processing protein (TARB2), miRNA-induced silencing complex protein (Argonaute-AGO) and PIWI-interacting RNAs silence transposon. Considering the crucial role of purine and pyrimidine nucleotides as energy carriers, subunits of nucleic acids and nucleotide cofactors, future explorations will be aimed to design novel anti-cancer immune strategies based on a specific acid endolysosomal nuclease inhibition.


Assuntos
MicroRNAs , Ácidos Nucleicos , Neoplasias da Próstata , Humanos , Masculino , Receptor Toll-Like 9/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , RNA de Interação com Piwi , NF-kappa B/metabolismo , MicroRNAs/genética , Ribonucleases , Macroautofagia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Neoplasias da Próstata/genética , Ligantes
9.
Br J Pharmacol ; 178(22): 4411-4427, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34235731

RESUMO

Aristolochic acid nephropathy is a progressive exposome-induced disease characterized by tubular atrophy and fibrosis culminating in end-stage renal disease and malignancies. The molecular mechanisms of the energy crisis as a putative cause of fibrosis have not yet been elucidated. In light of the fact that aristolochic acid forms DNA and RNA adducts by covalent binding of aristolochic acid metabolites to exocyclic amino groups of (deoxy)adenosine and (deoxy)guanosine, we hypothesize here that similar aristolochic acid adducts may exist with other purine-containing molecules. We also provide new insights into the aristolochic acid-induced energy crisis and presumably a link between already known mechanisms. In addition, an overview of potential targets in fibrosis treatment is provided, which is followed by recommendations on possible preventive measures that could be taken to at least postpone or partially alleviate aristolochic acid nephropathy.


Assuntos
Ácidos Aristolóquicos , Adutos de DNA , Ácidos Aristolóquicos/toxicidade , Fibrose , Humanos , Purinas
10.
Chem Biodivers ; 18(8): e2100261, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34170076

RESUMO

Herein we report an assessment of 24 1,2,3,4-tetrahydroisoquinoline derivatives for potential DNase I (deoxyribonuclease I) inhibitory properties in vitro. Four of them inhibited DNase I with IC50 values below 200 µM. The most potent was 1-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (2) (IC50 =134.35±11.38 µM) exhibiting slightly better IC50 value compared to three other active compounds, 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]-1-phenylethan-1-one (15) (IC50 =147.51±14.87 µM), 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one (18) (IC50 =149.07±2.98 µM) and 2-[6,7-dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one (22) (IC50 =148.31±2.96 µM). Cytotoxicity assessment of the active DNase I inhibitors revealed a lack of toxic effects on the healthy cell lines MRC-5. Molecular docking and molecular dynamics simulations suggest that interactions with Glu 39, His 134, Asn 170, Tyr 211, Asp 251 and His 252 are an important factor for inhibitors affinity toward the DNase I. Observed interactions would be beneficial for the discovery of new active 1,2,3,4-tetrahydroisoquinoline-based inhibitors of DNase I, but might also encourage researchers to further explore and utilize potential therapeutic application of DNase I inhibitors, based on a versatile role of DNase I during apoptotic cell death.


Assuntos
Desoxirribonuclease I/antagonistas & inibidores , Inibidores Enzimáticos/química , Tetra-Hidroisoquinolinas/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Linhagem Celular , Desoxirribonuclease I/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/metabolismo , Tetra-Hidroisoquinolinas/farmacologia
11.
J Med Chem ; 64(14): 9639-9648, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34190540

RESUMO

Approved and potent reported dipeptidyl peptidase-4 (DPP-4) inhibitors with gliptin-like structures are classified here according to their structures and mechanisms of the inhibition in three groups: (i) those with pyrrolidine or analogs as P1 fragment with α-aminoacyl linker, (ii) structures with trifluorophenyl moiety or analogs as P1 fragment with ß-aminobutanoyl linker, and (iii) DPP-4 inhibitors with pyrimidine-2,4-dione or analogs as P1' fragment. The structure-activity relationship analysis was performed for those whose cocrystallized structures with the enzyme were published. While inhibitors with pyrrolidine and trifluorophenyl moiety or analogs as P1 fragment bind in a similar way in S1, S2 and S2 extensive domains of the enzyme, the binding mode of pyrimidine-2,4-dione derivatives/analogs differs with additional interactions in S1' and S2' pockets. Three general schemes of fragmented gliptins and gliptin-like structures with the enzyme and protein-ligand interaction fingerprints were made, which might be useful in the creation of DPP-4 inhibitor's design strategies.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Pirrolidinas/farmacologia , Cristalografia por Raios X , Inibidores da Dipeptidil Peptidase IV/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Pirrolidinas/química , Relação Estrutura-Atividade
12.
Chem Biol Interact ; 345: 109536, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34058176

RESUMO

In this study, seven new 4-oxothiazolidine derivatives were synthesized and assayed, along 7 known derivatives, for inhibitory properties against deoxyribonuclease I (DNase I) and xanthine oxidase (XO) in vitro. Among tested compounds, (5Z)-Ethyl-2-(2-(cyanomethylene)-4-oxothiazolidin-5-yliden)acetate (6) exhibited inhibitory activity against both enzymes (DNase I IC50 = 67.94 ± 5.99 µM; XO IC50 = 98.98 ± 13.47 µM), therefore being the first reported dual inhibitor of DNase I and XO. Observed DNase I inhibition qualifies compound 6 as the most potent small organic DNase I inhibitor reported so far. Derivatives of 2-alkyliden-4-oxothiazolidinone (1) inhibited DNase I below 200 µM, while the other tested 4-oxothiazolidine derivatives remained inactive against both enzymes. The molecular docking and molecular dynamics simulations into the binding sites of DNase I and XO enzyme allowed us to clarify the binding modes of this 4-oxothiazolidine derivative, which might aid future development of dual DNase I and XO.


Assuntos
Desoxirribonuclease I/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Tiazolidinas/síntese química , Tiazolidinas/farmacologia , Xantina Oxidase/antagonistas & inibidores , Técnicas de Química Sintética , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Tiazolidinas/química , Tiazolidinas/metabolismo , Xantina Oxidase/química , Xantina Oxidase/metabolismo
13.
Chem Biodivers ; 18(3): e2000996, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33529484

RESUMO

Deoxyribonuclease I (DNase I) inhibitory properties of two 1-(pyrrolidin-2-yl)propan-2-one derivatives were examined in vitro. Determined IC50 values of 1-[1-(4-methoxyphenyl)pyrrolidin-2-yl]propan-2-one (1) (192.13±16.95 µM) and 1-[1-(3,4,5-trimethoxyphenyl)pyrrolidin-2-yl]propan-2-one (2) (132.62±9.92 µM) exceed IC50 value of crystal violet, used as a positive control, 1.89- and 2.73-times, respectively. Compounds are predicted to be nontoxic and to have favorable pharmacokinetic profiles, with high gastrointestinal absorption and blood-brain barrier permeability. Molecular docking and molecular dynamics simulations suggest that interactions with Glu 39, Glu 78, Arg 111, Pro 137, Asp 251 and His 252 are an important factor for inhibitors affinity toward the DNase I. Determined inhibitory properties along with predicted ADMET profiles and observed interactions would be beneficial for the discovery of new active 1-(pyrrolidin-2-yl)propan-2-one-based inhibitors of DNase I.


Assuntos
Desoxirribonuclease I/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Propano/farmacologia , Pirrolidinas/farmacologia , Desoxirribonuclease I/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Propano/análogos & derivados , Propano/química , Pirrolidinas/síntese química , Pirrolidinas/química , Estereoisomerismo , Relação Estrutura-Atividade
14.
Cancers (Basel) ; 12(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33065960

RESUMO

Balkan endemic nephropathy (BEN) is a chronic tubulointerstitial disease frequently accompanied by urothelial carcinoma (UC). In light of the increased UC incidence and the markers observed in BEN patients with developed UC, the aim of the current case-control study is to assess survivin, p53 protein, growth factors and receptors (VEGF, VEGFR1, IGF I, IGF-1R and IGFBP5), tumor marker (TF)/CD142, circulating soluble Fas receptor and neopterin, as potentially predictive markers for UC in patients with BEN (52 patients), compared to healthy, age-matched subjects (40). A threefold increase was registered in both circulating and urinary survivin level in BEN patients. Especially noticeable was the ratio of U survivin/U Cr level five times the ratio of BEN patients associated with standard renal markers in multivariate regression models. The concentrations of VEGF, VEGFR1, (TF)/CD142, (sFas) were not significantly different in BEN patients, while urinary/plasma level demonstrated a significant decrease for VEGF. The levels of IGF I, IGFBP5 and IGF-1R were significantly reduced in the urine of BEN patients. Plasma concentration of neopterin was significantly higher, while urinary neopterin value was significantly lower in BEN patients compared to healthy controls, which reflected a significantly lower urine/plasma ratio and low local predictive value. As BEN is a slow-progressing chronic kidney disease, early detection of survivin may be proposed as potential predictor for malignant alteration and screening tool in BEN patients without the diagnosis of UC.

15.
Oxid Med Cell Longev ; 2020: 8209727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908640

RESUMO

Balkan endemic nephropathy (BEN) represents a chronic tubulointerstitial nephropathy which is followed by the progression of kidney fibrosis to end-stage kidney failure. The critical involvement of poisons in food (aristolochic acid (AA), ochratoxin, and heavy metals) and selenium deficiency are among nutritive factors which contribute to the pathogenesis of BEN, due to reactive oxygen species (ROS) liberation and/or decreased antioxidative defence system. The aim of the study is to distinguish a possible systemic and local origin of ROS through the measurement of xanthine oxidase (XO) activity in urine and plasma, along with the determination of the oxidative changes in lipids and proteins. The study included 50 patients with BEN and 38 control healthy subjects. We noted increased levels of both thiobarbituric acid-reactive substances (TBARS) and advanced oxidation protein products (AOPPs) in the plasma of patients with BEN, compared to the control group (p < 0.001). The urinary levels of AOPPs were higher in patients with BEN in comparison to the control (p < 0.001). The specific activity of XO was significantly lower in plasma and urine in BEN samples, compared to controls (p < 0.005). Based on these results, we hypothesize that XO might not be considered a direct systemic or local contributor to ROS production in BEN, most probably because of the diminished kidney functional tissue mass and/or AA-induced changes in purine nucleotide conformation. The increased AOPP and TBARS level in both plasma and urine in BEN may predict ROS systemic liberation with toxic local effects.


Assuntos
Nefropatia dos Bálcãs/enzimologia , Nefropatia dos Bálcãs/patologia , Estresse Oxidativo , Xantina Oxidase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
16.
Front Pharmacol ; 11: 1185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848788

RESUMO

Since the outbreak of SARS-CoV-2 virus more than 12,500,000 cases have been reported worldwide. Patients suffering from diabetes and other comorbidities are particularly susceptible to severe forms of the COVID-19, which might result in chronic complications following recovery. Dipeptidyl peptidase-4 inhibitors exert beneficial effects in prevention/treatment of pulmonary fibrosis, heart, and kidney injury, and since they may be a long-term consequence caused by COVID-19, it is reasonable to expect that DPP-4 inhibitors might be beneficial in alleviating long-term consequences of COVID-19. With that in mind, we would like to voice our concerns over chronic implications following recovery from COVID-19, especially not only in diabetic but also in non-diabetic patients, and to indicate that some preventive measures could be undertaken by application of DPP-4 inhibitors.

17.
Chem Biol Interact ; 326: 109137, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442417

RESUMO

In the present study eighteen inhibitors of the hydrolytic enzymes of the endocannabinoid system were investigated for antioxidant activity using lipid peroxidation (LP) method. Among the assayed compounds ten belong to carbamates with phenyl [1,1'-biphenyl]-3-ylcarbamate (6), reported for the first time, and eight are retro-amide derivatives of palmitamine. Interestingly, results indicated that most of the tested compounds have good antioxidant properties. In particular, 1,3-di([1,1'-biphenyl]-3-yl)urea (3) shows IC50 = 26 ± 6 µM comparable to ones obtained for standard antioxidants trolox and quercetin (IC50 = 22 ± 6 µM and 23 ± 6 µM, respectively). Compound 3 was investigated further by means of DFT calculations, to clarify a possible mechanism of the antioxidant action. In order to estimate the capability of 3 to act as radical scavenger the structure was optimized at B3LYP/6-311++G** level and the respective bond dissociation enthalpies were calculated. The calculations in non-polar medium predicted as favorable mechanism a donation of a hydrogen atom to the free radical and formation of N-centered radical, while in polar solvents the mechanism of free radical scavenging by SPLET dominates over HAT H-abstraction. The possible radical scavenging mechanisms of another compound with potent antioxidant properties (IC50 = 53 ± 12 µM), the retro-amide derivative of palmitamine (compound 18), was estimated computationally based on the reaction enthalpies of a model compound (structural analogue to 18). The computations indicated that the most favorable mechanisms are hydrogen atom transfer from the hydroxyl group in meta-position of the benzamide fragment in nonpolar medium, and proton transfer from the hydroxyl group in ortho-position of the benzamide fragment in polar medium.


Assuntos
Compostos de Bifenilo/química , Peroxidação de Lipídeos/efeitos dos fármacos , Ureia/química , Anilidas/química , Antioxidantes/química , Benzamidas/química , Ácidos Graxos/química , Sequestradores de Radicais Livres/química , Radicais Livres/química , Hidrogênio/química , Ácidos Palmíticos/química , Solventes/química
18.
Arch Pharm (Weinheim) ; 353(7): e2000039, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32329137

RESUMO

In this study, a Pt(IV) complex with 3'-methyl-4-thio-1H-tetrahydropyranspiro-5'-hydantoin (complex 1) was synthesized. The structure was determined via elemental analyses, infrared, 1 H, and 13 C nuclear magnetic resonance techniques. Density functional theory calculations were applied to optimize the molecular geometry and to calculate structural parameters and vibrational frequencies. The cytotoxicity of the newly synthesized complex 1 was assessed against K-562 and REH cells and compared with the cytotoxic effects of the ligand (L) and its Pd(IV) complex (complex 2). Complex 1 exhibited a better cytotoxic activity (IC50 = 76.9 µM against K-562 and 15.6 µM against REH cells) than L and complex 2, which was closer to the cytotoxic effect of cisplatin (IC50 = 36.9 µM and 1.07 µM against K-562 and REH cells, respectively), as compared with the ligand and complex 2. L and its complexes 1 and 2 were evaluated for inhibitory activity against xanthine oxidase (XO) in vitro, as compared with allopurinol (IC50 = 1.70 µM). Complex 1 was shown as a potent XO inhibitor, with an IC50 value of 19.33 µM, and the binding mode with the enzyme was predicted by molecular docking. Its inhibitory activity against XO is a potential advantage that might result in improved profile and anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Organoplatínicos/farmacologia , Xantina Oxidase/antagonistas & inibidores , Adolescente , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Células K562 , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Células Tumorais Cultivadas , Xantina Oxidase/metabolismo
19.
Bioorg Chem ; 95: 103528, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918397

RESUMO

Eleven new 4-(4-chlorophenyl)thiazol-2-amines were synthesized and, together with nine known derivatives, evaluated in vitro for inhibitory properties towards bovine pancreatic DNase I. Three compounds (18-20) inhibited DNase I with IC50 values below 100 µM, with compound 19 being the most potent (IC50 = 79.79 µM). Crystal violet, used as a positive control in the absence of a "golden standard", exhibited almost 5-fold weaker DNase I inhibition. Pharma/E-State RQSAR models clarified critical structural fragments relevant for DNase I inhibition. Molecular docking and molecular dynamics simulation defined the 4-(4-chlorophenyl)thiazol-2-amines interactions with the most important catalytic residues of DNase I. Ligand-based pharmacophore modeling and virtual screening confirmed the chemical features of 4-(4-chlorophenyl)thiazol-2-amines required for DNase I inhibition and proved the absence of structurally similar molecules in available databases. Compounds 18-20 have been shown as very potent 5-LO inhibitors with nanomolar IC50 values obtained in cell-free assay, with compound 20 being the most potent (IC50 = 50 nM). Molecular docking and molecular dynamics simulations into the binding site of 5-LO enzyme allowed us to clarify the binding mode of these dual DNase I/5-LO inhibitors. It was shown that compounds 18-20 uniquely show interactions with histidine residues in the catalytic site of DNase I and 5-LO enzyme. In the absence of potent organic DNase I inhibitors, compounds 18-20 represent a good starting point for the development of novel Alzheimer's therapeutics based on dual 5-LO and DNase I inhibition, which also have anti-inflammatory properties.


Assuntos
Aminas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Desoxirribonuclease I/antagonistas & inibidores , Inibidores de Lipoxigenase/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Tiazóis/química , Aminas/química , Aminas/farmacologia , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Humanos , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacocinética , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade
20.
Chem Biol Interact ; 315: 108873, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31669219

RESUMO

Multiple-targeting compounds might reduce complex polypharmacy of multifactorial diseases, such as diabetes, and contribute to the greater therapeutic success. Targeting reactive oxygen species-producing enzymes, as xanthine oxidase (XO), might suppress progression of diabetes-associated vascular complications. In this study a small series of benzimidazole derivatives (1-9) was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4) and XO. One 1,3-disubstituted-benzimidazole-2-imine (5) and 1,3-thiazolo[3,2-a]benzimidazolone derivative (8) were shown as effective dual DPP-4 and XO inhibitors, with IC50 values lower than 200 µM, and predicted binding modes with both target enzymes. Both selected dual inhibitors (compounds 5 and 8) did not show cytotoxicity to a greater extent on Caco-2 cells even at concentration of 250 µM. These structures represent new non-purine scaffolds bearing two therapeutic functionalities, being DPP-4 and XO inhibitors, more favorable in comparison to DPP-4 inhibitors with DPP-4 as a single target due to pleiotropic effects of XO inhibition.


Assuntos
Benzimidazóis/farmacologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Xantina Oxidase/antagonistas & inibidores , Sítios de Ligação , Células CACO-2 , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular/métodos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA