Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Microbiol ; 23(1): 207, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37528354

RESUMO

BACKGROUND: The emergence of antibiotic resistance in pathogenic bacteria has become a global threat, encouraging the adoption of efficient and effective alternatives to conventional antibiotics and promoting their use as replacements. Titanium dioxide nanoparticles (TiO2 NPs) have been reported to exhibit antibacterial properties. In this study, we synthesized and characterized TiO2 NPs in anatase and rutile forms with surface modification by geraniol (GER). RESULTS: The crystallinity and morphology of modified TiO2 NPs were analyzed by UV/Vis spectrophotometry, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) with elemental mapping (EDS). The antimicrobial activity of TiO2 NPs with geraniol was assessed against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli. The minimum inhibitory concentration (MIC) values of modified NPs ranged from 0.25 to 1.0 mg/ml against all bacterial strains, and the live dead assay and fractional inhibitory concentration (FIC) supported the antibacterial properties of TiO2 NPs with GER. Moreover, TiO2 NPs with GER also showed a significant decrease in the biofilm thickness of MRSA. CONCLUSIONS: Our results suggest that TiO2 NPs with GER offer a promising alternative to antibiotics, particularly for controlling antibiotic-resistant strains. The surface modification of TiO2 NPs by geraniol resulted in enhanced antibacterial properties against multiple bacterial strains, including antibiotic-resistant MRSA. The potential applications of modified TiO2 NPs in the biomedical and environmental fields warrant further investigation.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
2.
Artigo em Inglês | MEDLINE | ID: mdl-36205103

RESUMO

For decades, the antimicrobial applications of nanoparticles (NPs) have attracted the attention of scientists as a strategy for controlling the ever-increasing threat of multidrug-resistant microorganisms. The photo-induced antimicrobial properties of titanium dioxide (TiO2 ) NPs by ultraviolet (UV) light are well known. This review elaborates on the modern methods and antimicrobial mechanisms of TiO2 NPs and their modifications to better understand and utilize their potential in various biomedical applications. Additional compounds can be grafted onto TiO2 nanomaterial, leading to hybrid metallic or non-metallic materials. To improve the antimicrobial properties, many approaches involving TiO2 have been tested. The results of selected studies from the past few years covering the most recent trends in this field are discussed in this review. There is extensive evidence to show that TiO2 NPs can exhibit certain antimicrobial features with disputable roles of UV light. Hence, they are effective in treating bacterial infections, although the majority of these conclusions came from in vitro studies and in the presence of some additional nanomaterials. The methods of evaluation varied depending on the nature of the research while researchers incorporated different techniques, including determining the minimum inhibitory concentration, cell count, and using disk and well diffusion methods, with a noticeable indication that cell count was the most and dominant criterion used to evaluate the antimicrobial activity. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Nanoestruturas , Anti-Infecciosos/farmacologia , Titânio/farmacologia
4.
J Nanobiotechnology ; 19(1): 103, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849566

RESUMO

In a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on the nanoparticle surface may influence both the nanoparticles' and proteins' overall bio-reactivity. Nevertheless, our knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocompatibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermostable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentration (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF metabolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the antibacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicrobial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection.


Assuntos
Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Colágeno/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Selênio/farmacologia , Alicerces Teciduais , Animais , Antibacterianos , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Humanos , Teste de Materiais , Porosidade , Selênio/química , Engenharia Tecidual/métodos , Cicatrização
5.
Talanta ; 224: 121813, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379038

RESUMO

The here presented work is focused on the development of a method for detection of microbial contamination of food based on uracil-selective synthetic receptors. Because uracil may serve as an indicator of bacterial contamination, its selective and on-site detection may prevent spreading of foodborne diseases. The synthetic receptors were created by molecular imprinting. Molecularly imprinted polymers for selective uracil isolation were prepared by a non-covalent imprinting method using dopamine as a functional monomer. Detection of isolated uracil was performed by capillary electrophoresis with absorption detection (λ - 260 nm). The conditions of preparation of molecularly imprinted polymers, their binding properties, adsorption kinetics and selectivity were investigated in detail. Furthermore, the prepared polymer materials were used for selective isolation and detection of uracil from complex samples as tomato products by miniaturized electrophoretic system suggesting the potential of in situ analysis of real samples.


Assuntos
Impressão Molecular , Receptores Artificiais , Adsorção , Polímeros , Uracila
6.
Nanomaterials (Basel) ; 10(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027935

RESUMO

A highly porous scaffold is a desirable outcome in the field of tissue engineering. The porous structure mediates water-retaining properties that ensure good nutrient transportation as well as creates a suitable environment for cells. In this study, porous antibacterial collagenous scaffolds containing chitosan and selenium nanoparticles (SeNPs) as antibacterial agents were studied. The addition of antibacterial agents increased the application potential of the material for infected and chronic wounds. The morphology, swelling, biodegradation, and antibacterial activity of collagen-based scaffolds were characterized systematically to investigate the overall impact of the antibacterial additives. The additives visibly influenced the morphology, water­retaining properties as well as the stability of the materials in the presence of collagenase enzymes. Even at concentrations as low as 5 ppm of SeNPs, modified polymeric scaffolds showed considerable inhibition activity towards Gram-positive bacterial strains such as Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis in a dose-dependent manner.

7.
J Colloid Interface Sci ; 580: 30-48, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679365

RESUMO

In the present study, the thermal decomposition of citric acid in the presence of biogenic amine was used to synthesize four different functionalized carbon quantum dots (CQDs), namely, histamine-(HCQDs), putrescine-(PCQDs), cadaverine-(CCQDs) and spermine-(SCQDs). The thermal decomposition of the precursors resulted in a decrease in stability and the formation of surface amides via a cross-linking process between the carboxyl and amine groups. The deposition of biogenic amines was confirmed by a structural characterization of the synthesized CQDs. The resulting CQDs, with a net zero charge, exhibited excellent stability in environments with different pH values. Through a set of different cytotoxicity tests, the absence of gene mutations, apoptosis, necrosis or disruption in cell membranes revealed the high biocompatibility of the CQDs. The antimicrobial activity of the synthesized CQDs was investigated against different bacterial species (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumonia). We determined the growth kinetics, production of reactive oxygen species (ROS), cell viability and changes in membrane integrity by scanning electron microscopy (SEM). The minimal inhibitory concentrations (MICs) for S. aureus ranged from 3.4 to 6.9 µg/mL. Regarding E.coli and K. pneumonia, all CQD formulations reduced growth, and the MICs were determined for CCQDs and HCQDs (6.9-19.4 µg/mL). The antibacterial activity mechanism was attributed to the oxidative stress generated after CQD treatment, which resulted in the destabilization of the bacterial membrane. The bacterial permeability to propidium iodide indicated a change in membrane integrity, and the effect of CQDs on the morphology of the bacterial cells was evidenced by SEM.


Assuntos
Pontos Quânticos , Aminas , Antibacterianos/farmacologia , Carbono , Staphylococcus aureus
8.
J Anim Sci Biotechnol ; 11: 59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528676

RESUMO

BACKGROUND: The high doses of zinc oxide (ZnO) administered orally to piglets for the prevention of diarrhea and increase of growth rate can contaminate pig farms and the surrounding environment. Therefore, there is a need to find a replacement of high doses of dietary ZnO with an equally effective alternative. In the present study, the effect of two formulations of zinc phosphate-based nanoparticles (ZnA and ZnC NPs) on growth performance, intestinal microbiota, antioxidant status, and intestinal and liver morphology was evaluated. A total of 100 weaned piglets were randomly divided into 10 equal groups with the base diet (control) or the base diet supplemented with ZnA, ZnC, or ZnO at concentrations 500, 1000, and 2000 mg Zn per kilogram of diet. Supplements were given to animals for 10 days. Fecal samples were collected on day 0, 5, 10 and 20. At the end of the treatment (day 10), three piglets from each group were sacrificed and analyzed. RESULTS: Comparing to that of control, the significantly higher piglet weight gain was observed in all piglet groups fed with ZnA (P < 0.05). Differences in the total aerobic bacteria and coliform counts in piglet feces after NPs supplementation compared to that of control and ZnO groups were also found (P < 0.05). The majority of aerobic culturable bacteria from the feces represented Escherichia (28.57-47.62%), Enterococcus (3.85-35.71%), and Streptococcus (3.70-42.31%) spp. A total of 542 Escherichia coli isolates were screened for the virulence genes STa, STb, Stx2, F4, and F18. The substantial occurrence of E. coli virulence factors was found on day 5, mainly in fimbrillary antigen and thermostable toxins, except for piglets fed by ZnC. Zn treatment decreased Zn blood levels in piglets fed with ZnO and ZnA (500 mg/kg) and increased in ZnC (2000 mg/kg) compared to that of control (P < 0.05). The antioxidant status of piglets was affected only by ZnA. While some changes in the liver and the intestinal morphology of piglets with NPs were observed, none were serious as reflected by the normal health status and increased weigh gain performance. CONCLUSIONS: Our results indicate that ZnA NPs have a positive effect on the piglet growth performance even at the lowest concentration. The prevalence of E. coli virulence factors was lowest in pigs supplemented with ZnC. Zinc phosphate-based nanoparticles may be an effective alternative to ZnO.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32363802

RESUMO

With a growing health threat of bacterial resistance to antibiotics, the nanomaterials have been extensively studied as an alternative. It is assumed that antimicrobial nanomaterials can affect bacteria by several mechanisms simultaneously and thereby overcome antibiotic resistance. Another promising potential use is employing nanomaterials as nanocarriers for antibiotics in order to overcome bacterial defense mechanisms. The passive targeting of nanomaterials is the often used strategy for bacterial treatment, including intracellular infections of macrophages. Furthermore, the specific targeting enhances the efficacy of antimicrobials and reduces side effects. This review aims to discuss advantages, disadvantages, and challenges of nanomaterials in the context of the targeting strategies for antimicrobials as advanced tools for treatments of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Assuntos
Anti-Infecciosos , Infecções Bacterianas/tratamento farmacológico , Nanoestruturas , Descoberta de Drogas , Farmacorresistência Bacteriana , Humanos , Nanomedicina
10.
Food Chem ; 321: 126673, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278983

RESUMO

In this work, a novel method was developed, for isolation of S. aureus from complex (food) samples using molecular imprinting.  Dopamine was used as a functional monomer and fluorescence microscopy was used for detection. Conditions for preparation of molecularly imprinted polymers (MIPs), adsorption performance, adsorption kinetic, and selectivity of the polymeric layers were investigated. The various procedures were combined in a single extraction process, with the imprinted layer on the surface of the magnetic particles (magnetic MIPs). Subsequently, MIPs were used for extraction of S. aureus from milk and rice. Moreover, raw milk from cows with mastitis was tested successfully. Using this novel MIP-based method, it was possible to detect bacteria in milk at 1 × 103CFU·ml-1, which corresponds to the limit set in European Union legislation for microbial control of food.


Assuntos
Leite/microbiologia , Impressão Molecular/métodos , Staphylococcus aureus/isolamento & purificação , Adsorção , Animais , Bovinos , Fenômenos Magnéticos , Magnetismo , Polímeros/química , Extração em Fase Sólida
11.
J Biomed Nanotechnol ; 16(1): 76-84, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31996287

RESUMO

Short non-coding RNAs, specifically microRNAs (miRNAs), are of a great interest due to their presumed function in genome regulation. Moreover, miRNAs are currently perceived as potential biomarkers for numerous diseases; a variety of detection methods and sensing systems have therefore been studied. We present a magnetic-bead-based assay for specific miRNA isolation coupled with sensitive electrophoretic analysis with fluorescence detection. The magnetic separation step involves creating a duplex with targeted miR-141, which is subsequently cleaved from the magnetic bead surface with a specific endonuclease. The duplex is then determined using capillary electrophoresis with laser-induced fluorescence detection in the presence of the fluorescent dye PicoGreen for quantitating double-stranded DNA. The benefits of using microcolumn separation technique coupled with sensitive detection over traditionally used determination by fluorescence spectrometry include the fact that there is no need for a specific pre-labeled fluorescent probe. This significantly simplifies the method and reduces the costs. Cross-reactivity with mismatched oligonucleotides (3 and 5 mismatched bases) and different miRNAs (miR-124 and miR-150) was tested, demonstrating the specificity of the developed method for miRNA-141. This magnetic extraction method was demonstrated for the direct isolation and determination of miR-141 at different concentration levels from urine samples and the achieved nanomolar detection limit.


Assuntos
Eletroforese Capilar , Corantes Fluorescentes , Limite de Detecção , MicroRNAs , Espectrometria de Fluorescência
12.
RSC Adv ; 10(72): 44601-44610, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35517148

RESUMO

Enhanced antibacterial properties of nanomaterials such as TiO2 nanotubes (TNTs) and silver nanoparticles (AgNPs) have attracted much attention in biomedicine and industry. The antibacterial properties of nanoparticles depend, among others, on the functionalization layer of the nanoparticles. However, the more complex information about the influence of different functionalization layers on antibacterial properties of nanoparticle decorated surfaces is still missing. Here we show the array of ∼50 nm diameter TNTs decorated with ∼50 nm AgNPs having different functionalization layers such as polyvinylpyrrolidone, branched polyethyleneimine, citrate, lipoic acid, and polyethylene glycol. To assess the antibacterial properties, the viability of Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) has been assessed. Our results showed that the functional layer of nanoparticles plays an important role in antibacterial properties and the synergistic effect such nanoparticles and TiO2 nanotubes have had different effects on adhesion and viability of G- and G+ bacteria. These findings could help researchers to optimally design any surfaces to be used as an antibacterial including the implantable titanium biomaterials.

13.
Polymers (Basel) ; 11(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835441

RESUMO

Nanocomposite films that were based on furcellaran (FUR) and nanofillers (carbon quantum dots (CQDs), maghemite nanoparticles (MAN), and graphene oxide (GO)) were obtained by the casting method. The microstructure, as well as the structural, physical, mechanical, antimicrobial, and antioxidant properties of the films was investigated. The incorporation of MAN and GO remarkably increased the tensile strength of furcellaran films. However, the water content, solubility, and elongation at break were significantly reduced by the addition of the nanofillers. Moreover, furcellaran films containing the nanofillers exhibited potent free radical scavenging ability. FUR films with CQDs showed an inhibitory effect on the growth of Staphylococcus aureus and Escherichia coli. The nanocomposite films were used to cover transparent glass containers to study the potential UV-blocking properties in an oil oxidation test and compare with tinted glass. The samples were irradiated for 30 min. with UV-B and then analyzed for oxidation markers (peroxide value, free fatty acids, malondialdehyde content, and degradation of carotenoids). The test showed that covering the transparent glass with MAN films was as effective in inhibiting the oxidation as the use of tinted glass, while the GO and CQDs films did not inhibit oxidation. It can be concluded that the active nanocomposite films can be used as a desirable material for food packaging.

14.
Sci Rep ; 9(1): 13837, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554833

RESUMO

Many studies correlate changes in human gut microbiome with the onset of various diseases, mostly by 16S rRNA gene sequencing. Setting up the optimal sampling and DNA isolation procedures is crucial for robustness and reproducibility of the results. We performed a systematic comparison of several sampling and DNA isolation kits, quantified their effect on bacterial gDNA quality and the bacterial composition estimates at all taxonomic levels. Sixteen volunteers tested three sampling kits. All samples were consequently processed by two DNA isolation kits. We found that the choice of both stool sampling and DNA isolation kits have an effect on bacterial composition with respect to Gram-positivity, however the isolation kit had a stronger effect than the sampling kit. The proportion of bacteria affected by isolation and sampling kits was larger at higher taxa levels compared to lower taxa levels. The PowerLyzer PowerSoil DNA Isolation Kit outperformed the QIAamp DNA Stool Mini Kit mainly due to better lysis of Gram-positive bacteria while keeping the values of all the other assessed parameters within a reasonable range. The presented effects need to be taken into account when comparing results across multiple studies or computing ratios between Gram-positive and Gram-negative bacteria.


Assuntos
Fezes/microbiologia , Bactérias Gram-Negativas/classificação , Bactérias Gram-Positivas/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética , Adulto , DNA Bacteriano/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/isolamento & purificação , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Filogenia , Kit de Reagentes para Diagnóstico , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Adulto Jovem
15.
J Control Release ; 307: 166-185, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31226356

RESUMO

The ever increasing scenario of bacterial resistance against commonly available antibiotics is becoming a global threat of major concern, which necessitates the development of new strategies to overcome this hurdle. Conjugation of nanoparticles (NPs) with antimicrobial moieties, such as antibiotics, peptides or different biomolecules, has been one of the successful techniques in targeting antibiotic resistance. This review mainly focusses on the possible nanoparticle-drug conjugates with their activity against pathogenic bacterial infections. Nanoparticles play an array of roles, e.g. as a carrier, synergistically acting agent and as theranostic agent, henceforth facilitates the efficacy of therapy. Moreover, this review elaborates the studies with reported nanoparticles-drug conjugates that include their possible synthesis methodologies and applications. In most of the cases, the nanoparticles were found to increase the permeability of bacterial cell membrane, which enables higher uptake of antibiotics inside the bacterial cells which in return showed better effects. Even the conjugates were found to efficiently kill the antibiotic-resistant strains. Since several limitations are exerted by the biological systems, there is an urge for the advancement of nanoparticle-drug conjugates for better proficiency.


Assuntos
Antibacterianos/administração & dosagem , Infecções Bacterianas/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Antibacterianos/química , Humanos , Nanopartículas/química
16.
Animals (Basel) ; 9(6)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200591

RESUMO

Essential oils (EOs) are now a hot topic in finding modern substitutes for antibiotics. Many studies have shown positive results and confirmed their high antibacterial activity both in vitro and in vivo. Deservedly, there is an attempt to use EOs as a substitute for antibiotics, which are currently limited by legislation in animal breeding. Given the potential of EOs, studies on their fate in the body need to be summarized. The content of EO's active substances varies depending on growing conditions and consequently on processing and storage. Their content also changes dynamically during the passage through the gastrointestinal tract and their effective concentration can be noticeably diluted at their place of action (small intestine and colon). Based on the solubility of the individual EO's active substances, they are eliminated from the body at different rates. Despite a strong antimicrobial effect, some oils can be toxic to the body and cause damage to the liver, kidneys, or gastrointestinal tissues. Reproductive toxicity has been reported for Origanum vulgare and Mentha arvensis. Several publications also address the effect on the genome. It has been observed that EOs can show both genoprotective effects (Syzygium aromaticum) and genotoxicity, as is the case of Cinnamomum camphor. This review shows that although oils are mainly studied as promising antimicrobials, it is also important to assess animal safety.

17.
Environ Sci Pollut Res Int ; 26(20): 20148-20163, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115815

RESUMO

Environmental pollutants, including antibiotics (ATBs), have become an increasingly common health hazard in the last several decades. Overdose and abuse of ATBs led to the emergence of antibiotic-resistant genes (ARGs), which represent a serious health threat. Moreover, water bodies and reservoirs are places where a wide range of bacterial species with ARGs originate, owing to the strong selective pressure from presence of ATB residues. In this regard, graphene oxide (GO) has been utilised in several fields including remediation of the environment. In this review, we present a brief overview of resistant genes of frequently used ATBs, their occurrence in the environment and their behaviour. Further, we discussed the factors influencing the binding of nucleic acids and the response of ARGs to GO, including the presence of salts in the water environment or water pH, because of intrinsic properties of GO of not only binding to nucleic acids but also catalysing their decomposition. This would be helpful in designing new types of water treatment facilities.


Assuntos
Antibacterianos/análise , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Grafite/química , Poluentes Químicos da Água/análise , Águas Residuárias/química , Águas Residuárias/microbiologia , Purificação da Água
18.
J Anim Sci Biotechnol ; 10: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805185

RESUMO

BACKGROUND: Development of new nanomaterials that inhibit or kill bacteria is an important and timely research topic. For example, financial losses due to infectious diseases, such as diarrhea, are a major concern in livestock productions around the world. Antimicrobial nanoparticles (NPs) represent a promising alternative to antibiotics and may lower antibiotic use and consequently spread of antibiotic resistance traits among bacteria, including pathogens. RESULTS: Four formulations of zinc nanoparticles (ZnA, ZnB, ZnC, and ZnD) based on phosphates with spherical (ZnA, ZnB) or irregular (ZnC, ZnD) morphology were prepared. The highest in vitro inhibitory effect of our NPs was observed against Staphylococcus aureus (inhibitory concentration values, IC50, ranged from 0.5 to 1.6 mmol/L), followed by Escherichia coli (IC50 0.8-1.5 mmol/L). In contrast, methicillin resistant S. aureus (IC50 1.2-4.7 mmol/L) was least affected and this was similar to inhibitory patterns of commercial ZnO-based NPs and ZnO. After the successful in vitro testing, the in vivo study with rats based on dietary supplementation with zinc NPs was conducted. Four groups of rats were treated by 2,000 mg Zn/kg diet of ZnA, ZnB, ZnC, and ZnD, for comparison two groups were supplemented by 2,000 mg Zn/kg diet of ZnO-N and ZnO, and one group (control) was fed only by basal diet. The significantly higher (P < 0.05) Zn level in liver and kidney of all treated groups was found, nevertheless Zn NPs did not greatly influence antioxidant status of rats. However, the total aerobic and coliform bacterial population in rat feces significantly decreased (P < 0.05) in all zinc groups after 30 d of the treatment. Furthermore, when compared to the ZnO group, ZnA and ZnC nanoparticles reduced coliforms significantly more (P < 0.05). CONCLUSIONS: Our results demonstrate that phosphate-based zinc nanoparticles have the potential to act as antibiotic agents.

19.
J Inorg Biochem ; 191: 8-20, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448716

RESUMO

In the present study, two binuclear copper(II) coordination compounds bridged by hydroxy- and thiodipropionic acid have been synthesized. The structure of compounds was determined by X-ray crystallography. The central copper atoms exist in square pyramidal surroundings. Basal plane is formed by nitrogen atoms of amines and oxygen atoms of bridges, whereas apical positions are occupied by oxygen atoms of coordinated water molecules. Temperature dependence study of magnetic susceptibility proved strong antiferromagnetic exchange between copper atoms in hydroxy-bridged complex. These coordination compounds were also tested for their biological activities in vitro. Both coordination compounds exhibit pronounced cytocompatibility in mammalian epithelial cells with no induction of oxidative stress and DNA fragmentation. Moreover, synthesized compounds are hemocompatible and do not alter expression of a marker of multiple cellular stress, p53. On the other hand, both compounds had stimulatory effect on expression of metallothioneins (MT-1/2 and MT-3). Antimicrobial testing on Escherichia coli, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus revealed that both copper compounds exhibit antibacterial activity regardless the cell wall composition. Overall, current work presents a synthesis of Cu(II) coordination compounds with interesting biological behavior and with a promising potential to be further tested in pre-clinical models.


Assuntos
Antibacterianos/química , Complexos de Coordenação/química , Cobre/química , Propionatos/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Materiais Biocompatíveis , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Hemólise/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Cicatrização/efeitos dos fármacos
20.
Environ Res ; 166: 394-401, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29936287

RESUMO

The presented study deals with the observation of properties of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in the toxic arsenic environment and influence of arsenic on antioxidant capacity. Two forms of arsenic (As(III), As(V)) with different concentrations were used for induction of the oxidative stress in tested strains. Microbiological methods showed that the growth inhibition of MSSA was higher than that of MRSA in presence of both arsenic ions. As(III) showed 24% and 33% higher anti-microbial effects than As(V) against MSSA and MRSA respectively. A similar result was found also in the experiment of reduction of biofilm-formation. By using spectrophotometry, it was revealed that As(III) induced higher antioxidant production in both bacterial cultures. Methicillin-susceptible S. aureus produced an app. 50 mg equivalent of gallic acid (GAE/1 mg of protein) and MRSA produced an app. 15 mg of GAE/1 mg of protein. The productions of metallothionein in MSSA and MRSA were decreased up to 62.41% and 55.84% respectively in presence of As ions. Reduction of As(III) and As(V) concentrations leads to a decrease in antioxidant production and increased the formation of metallothionein. All of these changes in the results were found to be significant statistically. Taken together, these experiments proved that in comparison with MSSA, MRSA is less susceptible not only to the antimicrobial effects of antibiotics but also against effects caused by metalloids, as arsenic. Thus, it can be stated that MRSA abounds with complex defensive mechanisms, which may in the future constitute significant problem in the efficiency of antibiotics alternatives as metal ions or nanoparticles.


Assuntos
Antioxidantes/metabolismo , Arsênio/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Estresse Oxidativo , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos , Ácido Gálico/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA