Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 154: 113582, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055111

RESUMO

Mitochondria generate energy and building blocks required for cellular growth and function. The notion that mitochondria are not involved in the cancer growth has been challenged in recent years together with the emerging idea of mitochondria as a promising therapeutic target for oncologic diseases. Pentamethinium salts, cyan dyes with positively charged nitrogen on the benzothiazole or indole part of the molecule, were originally designed as mitochondrial probes. In this study, we show that pentamethinium salts have a strong effect on mitochondria, suppressing cancer cell proliferation and migration. This is likely linked to the strong inhibitory effect of the salts on dihydroorotate dehydrogenase (DHODH)-dependent respiration that has a key role in the de novo pyrimidine synthesis pathway. We also show that pentamethinium salts cause oxidative stress, redistribution of mitochondria, and a decrease in mitochondria mass. In conclusion, pentamethinium salts present novel anti-cancer agents worthy of further studies.


Assuntos
Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Respiração , Sais/metabolismo
3.
Histochem Cell Biol ; 157(2): 153-172, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34837514

RESUMO

The incidence of cutaneous malignant melanoma is increasing worldwide. While the treatment of initial stages of the disease is simple, the advanced disease frequently remains fatal despite novel therapeutic options . This requires identification of novel therapeutic targets in melanoma. Similarly to other types of tumours, the cancer microenvironment plays a prominent role and determines the biological properties of melanoma. Importantly, melanoma cell-produced exosomes represent an important tool of intercellular communication within this cancer ecosystem. We have focused on potential differences in the activity of exosomes produced by melanoma cells towards melanoma-associated fibroblasts and normal dermal fibroblasts. Cancer-associated fibroblasts were activated by the melanoma cell-produced exosomes significantly more than their normal counterparts, as assessed by increased transcription of genes for inflammation-supporting cytokines and chemokines, namely IL-6 or IL-8. We have observed that the response is dependent on the duration of the stimulus via exosomes and also on the quantity of exosomes. Our study demonstrates that melanoma-produced exosomes significantly stimulate the tumour-promoting proinflammatory activity of cancer-associated fibroblasts. This may represent a potential new target of oncologic therapy .


Assuntos
Exossomos/metabolismo , Fibroblastos/metabolismo , Melanoma Experimental/metabolismo , Fibroblastos/patologia , Humanos , Melanoma Experimental/patologia , Células Tumorais Cultivadas
4.
Dev Growth Differ ; 57(1): 74-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25611296

RESUMO

A central function of the Drosophila salivary glands (SGs), historically known for their polytene chromosomes, is to produce and then release during pupariation the secretory glue used to affix a newly formed puparium to a substrate. This essential event in the life history of Drosophila is regulated by the steroid hormone ecdysone in the late-larval period. Ecdysone triggers a cascade of sequential gene activation that leads to glue secretion and initiates the developmentally-regulated programmed cell death (PCD) of the larval salivary glands, which culminates 16 h after puparium formation (APF). We demonstrate here that, even after the larval salivary glands have completed what is perceived to be one of their major biological functions--glue secretion during pupariation--they remain dynamic and physiologically active up until the execution phase of PCD. We have used specific metabolic inhibitors and genetic tools, including mutations or transgenes for shi, Rab5, Rab11, vha55, vha68-2, vha36-1, syx1A, syx4, and Vps35 to characterize the dramatic series of cellular changes occurring in the SG cells between pupariation and 7-8 h APF. Early in the prepupal period, they are remarkably active in endocytosis, forming acidic vacuoles. Midway through the prepupal period, there is abundant late endosomal trafficking and vacuole growth, which is followed later by vacuole neutralization and disappearance via membrane consolidation. This work provides new insights into the function of Drosophila SGs during the early- to mid-prepupal period.


Assuntos
Ecdisona/metabolismo , Endossomos/metabolismo , Glândulas Salivares/metabolismo , Vacúolos/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ecdisona/genética , Endossomos/genética , Pupa , Glândulas Salivares/citologia , Vacúolos/genética
5.
J Histochem Cytochem ; 62(10): 739-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24980853

RESUMO

Inosine-5'-monophosphate dehydrogenase catalyzes the critical step in the de novo synthesis of guanosine nucleotides: the oxidation of inosine monophosphate to xanthosine monophosphate. This reaction can be inhibited by specific inhibitors, such as ribavirin or mycophenolic acid, which are widely used in clinical treatment when required to inhibit the proliferation of viruses or cells. However, it was recently found that such an inhibition affects the cells, leading to a redistribution of IMPDH2 and the appearance of IMPDH2 inclusions in the cytoplasm. According to their shape, these inclusions have been termed "Rods and Rings" (R&R). In this work, we focused on the subcellular localization of IMPDH2 protein and the ultrastructure of R&R inclusions. Using microscopy and western blot analysis, we show the presence of nuclear IMPDH2 in human cells. We also show that the nuclear pool has an ability to form Rod structures after inhibition by ribavirin. Concerning the ultrastructure, we observed that R&R inclusions in cellulo correspond to the accumulation of fibrous material that is not surrounded by a biological membrane. The individual fibers are composed of regularly repeating subunits with a length of approximately 11 nm. Together, our findings describe the localization of IMPDH2 inside the nucleus of human cells as well as the ultrastructure of R&R inclusions.


Assuntos
Núcleo Celular/enzimologia , Núcleo Celular/ultraestrutura , Citoplasma/enzimologia , Citoplasma/ultraestrutura , IMP Desidrogenase/química , IMP Desidrogenase/ultraestrutura , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/metabolismo
6.
PLoS One ; 9(4): e94383, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732043

RESUMO

In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal ß-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity.


Assuntos
Glândulas Apócrinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais , Glândulas Apócrinas/ultraestrutura , DNA/metabolismo , Corantes Fluorescentes/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Biossíntese de Proteínas , Pupa/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Glândulas Salivares/ultraestrutura , Frações Subcelulares/metabolismo , Transcrição Gênica
7.
Biol Cell ; 105(11): 519-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23937274

RESUMO

BACKGROUND INFORMATION: A Polycomb (PcG) body is an orphan nuclear subcompartment characterised by accumulations of Polycomb repressive complex 1 (PRC1) proteins. However, seemingly contradictory reports have appeared that describe the PcG bodies either as protein-based bodies in the interchromatin compartment or chromatin domains. In this respect, molecular crowding is an important factor for the assembly and stability of nuclear subcompartments. In order to settle this contradiction, crowding experiments, that represent a convenient model distinguishing between interchromatin and chromatin compartments, were carried out. RESULTS: In sucrose-hypertonically induced crowding, we observed in U-2 OS cells that PcG bodies disappeared, but persisted as nuclear domains characterised by accumulations of DNA. This phenomenon was also observed in cells hypertonically treated with sorbitol and NaCl. Importantly, the observed changes were quickly reversible after re-incubation of cells in normal medium. We found that the PcG foci disappearance and the dissociation of PRC1 proteins (BMI1 and RING1a proteins) from chromatin were associated with their hyper-phosphorylation. In addition, under hyper- and hypotonic conditions, the behaviour of the PcG bodies differed from that of the typical nucleoplasmic body. CONCLUSION: PRC1 proteins accumulations do not represent a genuine nuclear subcompartment. The PcG body is a chromosomal domain, rather than a nucleoplasmic body.


Assuntos
Cromatina/metabolismo , Substâncias Macromoleculares/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Antraquinonas/metabolismo , Linhagem Celular Tumoral , Fluorescência , Humanos , Soluções Hipertônicas/farmacologia , Fosforilação/efeitos dos fármacos , Complexo Repressor Polycomb 1/metabolismo , RNA/genética , RNA/metabolismo , Coloração e Rotulagem , Sacarose/farmacologia , Transcrição Gênica/efeitos dos fármacos
8.
Nucleus ; 2(3): 219-28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21818415

RESUMO

Polycomb group (PcG) proteins of the Polycomb repressive complex 1 (PRC1) are found to be diffusely distributed in nuclei of cells from various species. However they can also be localized in intensely fluorescent foci, whether imaged using GFP fusions to proteins of PRC1 complex, or by conventional immunofluorescence microscopy. Such foci are termed PcG bodies, and are believed to be situated in the nuclear intechromatin compartment. However, an ultrastructural description of the PcG body has not been reported to date. To establish the ultrastructure of PcG bodies in human U-2 OS cells stably expressing recombinant polycomb BMI1-GFP protein, we used correlative light-electron microscopy (CLEM) implemented with high-pressure freezing, cryosubstitution and on-section labeling of BMI1 protein with immunogold. This approach allowed us to clearly identify fluorescent PcG bodies, not as distinct nuclear bodies, but as nuclear domains enriched in separated heterochromatin fascicles. Importantly, high-pressure freezing and cryosubstitution allowed for a high and clear-cut immunogold BMI1 labeling of heterochromatin structures throughout the nucleus. The density of immunogold labeled BMI1 in the heterochromatin fascicles corresponding to fluorescent "PcG bodies" did not differ from the density of labeling of heterochromatin fascicles outside of the "PcG bodies". Accordingly, an appearance of the fluorescent "PcG bodies" seems to reflect a local accumulation of the labeled heterochromatin structures in the investigated cells. The results of this study should allow expansion of the knowledge about the biological relevance of the "PcG bodies" in human cells.


Assuntos
Luz , Microscopia Eletrônica , Proteínas Repressoras/química , Linhagem Celular Tumoral , Criopreservação , Heterocromatina/metabolismo , Humanos , Imuno-Histoquímica , Proteínas do Grupo Polycomb , Pressão , Proteínas Repressoras/metabolismo
9.
J Cell Physiol ; 219(3): 677-87, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19202556

RESUMO

Epigenetic marks are important factors regulating the pluripotency and differentiation of human embryonic stem cells (hESCs). In this study, we analyzed H3K9 acetylation, an epigenetic mark associated with transcriptionally active chromatin, during endoderm-like differentiation of hESCs. ChIP-on-chip analysis revealed that differentiation results in a genome-wide decrease in promoter H3K9 acetylation. Among the 24,659 promoters analyzed, only 117 are likely to be involved in pluripotency, while 25 acetylated promoters are likely to be responsible for endoderm-like differentiation. In pluripotent hESCs, the chromosomes with the highest absolute levels of H3K9 acetylation are chromosomes 1, 6, 2, 17, 11, and 12 (listed in order of decreasing acetylation). Chromosomes 17, 19, 11, 20, 22, and 12 are the most prone to differentiation-related changes (both increased acetylation and deacetylation). When chromosome size (in Mb) was accounted for, the highest H3K9 acetylation levels were found on chromosome 19, 17, 6, 12, 11, and 1, and the greatest differentiation-associated decreases in H3K9 acetylation occurred on chromosomes 19, 17, 11, 12, 16, and 1. The gene density and size of individual chromosomes were strongly correlated with the levels of H3K9 acetylation. Our analyses point to chromosomes 11, 12, 17, and 19 as being critical for hESC pluripotency and endoderm-like differentiation. J. Cell. Physiol. 219: 677-687, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Histonas/metabolismo , Acetilação , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Genoma Humano , Histonas/química , Histonas/genética , Humanos , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA