Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686131

RESUMO

2,3,5,6-Tetramethyl-1,4-diisocyanobenzene (1), 1,4-diisocyanobenzene (2), and 1,4-dicyanobenzene (3) were co-crystallized with 1,3,5-triiodotrifluorobenzene (1,3,5-FIB) to give three cocrystals, 1·1,3,5-FIB, 2·2(1,3,5-FIB), and 3·2(1,3,5-FIB), which were studied by X-ray diffraction. A common feature of the three structures is the presence of I···Cisocyanide or I···Nnitrile halogen bonds (HaBs), which occurs between an iodine σ-hole and the isocyanide C-(or the nitrile N-) atom. The diisocyanide and dinitrile cocrystals 2·2(1,3,5-FIB) and 3·2(1,3,5-FIB) are isostructural, thus providing a basis for accurate comparison of the two types of noncovalent linkages of C≡N/N≡C groups in the composition of structurally similar entities and in one crystal environment. The bonding situation was studied by a set of theoretical methods. Diisocyanides are more nucleophilic than the dinitrile and they exhibit stronger binding to 1,3,5-FIB. In all structures, the HaBs are mostly determined by the electrostatic interactions, but the dispersion and induction components also provide a noticeable contribution and make the HaBs attractive. Charge transfer has a small contribution (<5%) to the HaB and it is higher for the diisocyanide than for the dinitrile systems. At the same time, diisocyanide and dinitrile structures exhibit typical electron-donor and π-acceptor properties in relation to the HaB donor.


Assuntos
Cianetos , Iodo , Halogênios , Nitrilas
2.
Chem Asian J ; 18(7): e202300037, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807544

RESUMO

Co-crystallization of 180°-orienting σ-hole-accepting tectons, namely, 1,4-diisocyanobenzene (1) and 1,4-diisocyanotetramethylbenzene (2), with such homoditopic halogen bond donors as 1,4-diiodotetrafluorobenzene (1,4-FIB) and 4,4'-diiodoperfluorobiphenyl (4,4'-FIBP) afforded co-crystals 1 ⋅ 1,4-FIB, 1 ⋅ 4,4'-FIBP, and 2 ⋅ 1,4-FIB. Their solid-state structures exhibit 1D-supramolecular arrangements, which are based on poorly explored I⋅⋅⋅C halogen bonding; this study is the first in which the supramolecular assembly utilizing halogen bonding with a terminal C atom was performed. The use of the potentially tetrafunctional σ-hole accepting tetraiodoethylene (TIE) leads to supramolecular architecture of a higher dimension, 3D-framework, observed in the structure of 1 ⋅ TIE. DFT calculations, used to characterize the halogen bonding situation, revealed that the I⋅⋅⋅C non-covalent interactions are moderately strong, ranging from -4.07 in 1 ⋅ TIE to -5.45 kcal/mol in 2 ⋅ 1,4-FIB. The NBO analysis disclosed that LP(C)→σ* charge transfer effects are relevant in all co-crystals.

3.
ACS Omega ; 7(38): 34454-34462, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188282

RESUMO

Cyclometalated platinum(II) complexes [Pt(ppy)Cl(CNAr)] (ppy = 2-phenylpyridinato-C2,N; Ar = C6H4-2-I 1, C6H4-4-I 2, C6H3-2-F-4-I 3, and C6H3-2,4-I2 4) bearing ancillary isocyanide ligands were obtained by the bridge-splitting reaction between the dimer [Pt(ppy)(µ-Cl)]2 and 2 equiv any one of the corresponding CNAr. Complex 2 was crystallized in two polymorphic forms, namely, 2 I and 2 II, exhibiting green (emission quantum yield of 0.5%) and orange (emission quantum yield of 12%) phosphorescence, respectively. Structure-directing non-covalent contacts in these polymorphs were verified by a combination of experimental (X-ray diffraction) and theoretical methods (NCIplot analysis, combined electron localization function (ELF), and Bader quantum theory of atoms in molecules (QTAIM analysis)). A noticeable difference in the spectrum of non-covalent interactions of 2 I and 2 II is seen in the Pt···Pt interactions in 2 II and absence of these metallophilic contacts in 2 I. The other solid luminophores, namely, 1, 3 I-II, 4, and 4·CHCl3, exhibit green luminescence; their structures include intermolecular C-I···Cl-Pt halogen bonds as the structure-directing interactions. Crystals of 1, 2 I, 3 I, 3 II, 4, and 4·CHCl3 demonstrated a reversible mechanochromic color change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).

4.
Rapid Commun Mass Spectrom ; 36(6): e9248, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34958160

RESUMO

RATIONALE: The In-In2 O3 system is regarded as a potential low-temperature source of gaseous indium oxide (In2 O) when obtaining functional materials by physical vapor deposition techniques. To date the vaporization thermodynamics of the system have been investigated in few studies, the results of which are contradictory. METHODS: The study of the In-In2 O3 system was performed using Knudsen effusion mass spectrometry in the temperature range 930-1210 K, with a magnet mass spectrometer (MS-1301). Quartz effusion cells heated by a resistance furnace were employed. RESULTS: It was established that In(g) and In2 O(g) are the major vapor species over heterogeneous mixtures (In(l) + In2 O3 (s)) and the gaseous oxide In2 O is predominant. The partial pressures of the vapor species were determined and the quantitative vapor composition was calculated. Based on the experimental data, a p-x section of the In-In2 O3 system phase diagram at 1060 K was constructed. The standard enthalpies of reactions accompanying vaporization of the In and In2 O3 mixtures were evaluated using the second- and third-law methods. The standard enthalpy of formation of In2 O(g) was derived from the enthalpies of reactions obtained. CONCLUSIONS: The predominance of In2 O in the equilibrium vapor over heterogeneous mixtures (In(l) + In2 O3 (s)), along with its high partial pressure at relatively low temperatures, substantiate the In-In2 O3 system to be suitable for physical vapor deposition methods. The obtained results can be used for physical vapor deposition parameter adjustment and optimization. The standard enthalpy of formation of In2 O(g) obtained in an independent way in the present work is in good agreement with that from our previous In2 O3 (s) vaporization study.

5.
Rapid Commun Mass Spectrom ; 35(15): e9127, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34014580

RESUMO

RATIONALE: In2 O3 is one of the most important semiconductor oxides in modern electronics. Vacuum deposition methods are often used for the preparation of In2 O3 -based nanomaterials. Thus, vaporization thermodynamics is of key importance for process control and optimization. Since the literature data on the vapor composition and partial pressure values for In2 O3 are contradictory, vaporization thermodynamics of In2 O3 needs to be clarified. METHODS: Vaporization behavior of In2 O3 was studied using the Knudsen effusion technique in the temperature range 1400-1610 K. Quartz effusion cells were employed. A magnet mass spectrometer with an ordinary focus and a sector-type analyzer was used. Heating of samples and molecular beam ionization were performed by electron impact. The operating ionizing electron energy was 75 eV. RESULTS: A specially designed experiment allowed us to determine the individual mass spectrum of the In2 O molecule and, thus, to interpret the mass spectrum of the vapor registered during In2 O3 vaporization. The composition of the equilibrium vapor was quantified and the partial pressures of the vapor species were determined. On the basis of the experimental data, the standard enthalpies of some gaseous and heterogeneous reactions taking place during In2 O3 vaporization and the standard enthalpy of formation of In2 O(g) were calculated. CONCLUSIONS: The presence of In species in the vapor over In2 O3 was confirmed and the vapor composition was quantified. Thermodynamic characteristics of In2 O3 vaporization were obtained and a value of the standard enthalpy of formation of In2 O(g) was recommended. These data can be used for further thermodynamic calculations and for evaluating parameters for the synthesis and exploitation of In2 O3 -containing materials.

6.
Inorg Chem ; 59(4): 2209-2222, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32011868

RESUMO

A new application for bis(cyclometalated) iridium(III) species containing ancillary acyclic diaminocarbene ligands, viz. for sensing of mercury(II) ions, is disclosed. A family of bis(cyclometalated) iridium(III) species supported by both parent isocyanide and acyclic diaminocarbene ligands was prepared, and their electrochemical and photophysical properties were evaluated, revealing efficient blue-green phosphorescence in solution with quantum yields of up to 55%. We uncovered that the photophysical properties of these complexes are dramatically altered by the presence of metal ions and that the complex [Ir(ppy)2(CN){C(NH2)(NHC6H4-4-X)}] with an ADC ligand reacts selectively with Hg2+ ions, enabling its use for sensing of mercury(II) ions in solution. The limit of detection was as low as 2.63 × 10-7 M, and additional mechanistic studies indicated the formation of an unusual dinuclear iridium(III) cyclometalated intermediate, bridged by a mercury dicyano fragment as a driving force of mercury sensing.

7.
Chem Asian J ; 14(21): 3915-3920, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31550070

RESUMO

The dihalomethanes CH2 X2 (X=Cl, Br, I) were co-crystallized with the isocyanide complexes trans-[MXM 2 (CNC6 H4 -4-XC )2 ] (M=Pd, Pt; XM =Br, I; XC =F, Cl, Br) to give an extended series comprising 15 X-ray structures of isostructural adducts featuring 1D metal-involving hexagon-like arrays. In these structures, CH2 X2 behave as bent bifunctional XB/XB-donating building blocks, whereas trans-[MXM 2 (CNC6 H4 -4-XC )2 ] act as a linear XB/XB acceptors. Results of DFT calculations indicate that all XCH2 -X⋅⋅⋅XM -M contacts are typical noncovalent interactions with estimated strengths in the range of 1.3-3.2 kcal mol-1 . A CCDC search reveals that hexagon-like arrays are rather common but previously overlooked structural motives for adducts of trans-bis(halide) complexes and halomethanes.

8.
Chemistry ; 25(60): 13671-13675, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31232494

RESUMO

The isocyanide trans-[PdBr2 (CNC6 H4 -4-X')2 ] (X'=Br, I) and nitrile trans-[PtX2 (NCC6 H4 -4-X')2 ] (X/X'=Cl/Cl, Cl/Br, Br/Cl, Br/Br) complexes exhibit similar structural motif in the solid state, which is determined by hitherto unreported four-center nodes formed by cyclic halogen bonding. Each node is built up by four Type II C-X'⋅⋅⋅X-M halogen-bonding contacts and include one Type I M-X⋅⋅⋅X-M interaction, thus giving the rhombic-like structure. These nodes serve as supramolecular synthons to form 2D layers or double chains of molecules linked by a halogen bond. Results of DFT calculations indicate that all contacts within the nodes are typical noncovalent interactions with the estimated strengths in the range 0.6-2.9 kcal mol-1 .

9.
Dalton Trans ; 48(22): 7571-7582, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31033974

RESUMO

Reaction of [Ir(µ-Cl)(ppy)2]2 (1) with 4 equivs of CNC6H4X (X = F 2a, Cl 2b, Br 2c, I 2d) in the presence of 2 equivs of AgOTf in dichloromethane at 20-25 °C furnished the bisisocyanide complexes [Ir(ppy)2(CNC6H4X)2](OTf) ([3a-d](OTf); 72-87%). Reaction of [3a-d](OTf) with an excess of gaseous ammonia at room temperature gave the bisdiaminocarbene species [Ir(ppy)2{C(NH2)NHC6H4X}2](OTf) [5a-d](OTf) (73-83%); the two-step addition proceeds through an intermediate formation of appropriate monocarbene complexes [4a-d](OTf). Further reaction of [5a-d](OTf) with an excess of gaseous ammonia at 50 °C led to the cleavage of one diaminocarbene ligand to the cyanide ligand in [Ir(ppy)2(CN){C(NH2)NHC6H4X}] (6a-d) and this transformation is accompanied with the elimination of a substituted aniline. Treatment of [5a-d](OTf) with N(CH2CH2OH)3 at 50 °C resulted in the cleavage of the diaminocarbene ligand to the isocyanide and uncomplexed NH3; isocyanide remains bound to the iridium(iii) center in [Ir(ppy)2{C(NH2)NHC6H4X}(CNC6H4X)](OTf) (4a-d). All isolated compounds were characterized by elemental analyses (C, H, N), molar conductivity measurements, TG/DTA, HRESI+/--MS, FTIR, 1D (1H, 13C{1H}, 19F{1H}) and 2D (1H,1H-COSY, 1H,13C-HMQC/1H,13C-HSQC, 1H,13C-HMBC) NMR, and also by X-ray diffraction (for the bisisocyanide 3, the diaminocarbene/isocyanide 4, the bisdiaminocarbene 5, and the diaminocarbene/cyanide 6 type complexes).

10.
Angew Chem Int Ed Engl ; 57(39): 12785-12789, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30075056

RESUMO

In the current study, we evaluated the solubility of a number of organometallic species and showed that it is noticeably improved in diiodomethane when compared to other haloalkane solvents. The better solvation properties of CH2 I2 were associated with the substantially better σ-hole-donating ability of this solvent, which results in the formation of uniquely strong solvent-(metal complex) halogen bonding. The strength of the halogen bonding is attenuated by the introduction of additional halogen atoms in the organometallic species owing to the competitive formation of more favourable intermolecular complex-complex halogen bonding. The exceptional solvation properties of diiodomethane and its inertness towards organometallic species make this solvent a good candidate for NMR studies, in particular, for the acquisition of spectra of insensitive spins.

11.
ACS Omega ; 2(4): 1380-1391, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457510

RESUMO

CuI-catalyzed cycloaddition (CA) of the ketonitrones, Ph2C=N+(R')O- (R' = Me, CH2Ph), to the disubstituted cyanamides, NCNR2 (R = Me2, Et2, (CH2)4, (CH2)5, (CH2)4O, C9H10, (CH2Ph)2, Ph(Me)), gives the corresponding 5-amino-substituted 2,3-dihydro-1,2,4-oxadiazoles (15 examples) in good to moderate yields. The reaction proceeds under mild conditions (CH2Cl2, RT or 45 °C) and requires 10 mol % of [Cu(NCMe)4](BF4) as the catalyst. The somewhat reduced yields are due to the individual properties of 2,3-dihydro-1,2,4-oxadiazoles, which easily undergo ring opening via N-O bond splitting. Results of density functional theory calculations reveal that the CA of ketonitrones to CuI-bound cyanamides is a concerted process, and the copper-catalyzed reaction is controlled by the predominant contribution of the HOMOdipole-LUMOdipolarophile interaction (group I by Sustmann's classification). The metal-involving process is much more asynchronous and profitable from both kinetic and thermodynamic viewpoints than the hypothetical metal-free reaction.

12.
Inorg Chem ; 54(22): 11018-30, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26536298

RESUMO

The complex trans-[PtCl4(EtCN)2] (14) reacts smoothly at 25 °C with the stable cyclic azomethine imines R(1)CH═N(a)NC(O)CH(NHC(O)C6H4R(3))C(b)H(C6H4R(2))((a-b)) [R(1)/R(2)/R(3) = p-Me/H/H (8); p-Me/p-Me/H (9); p-Me/p-MeO/H (10); p-Me/p-Cl/p-Cl (11); p-MeO/p-Me/H (12); p-MeO/p-Cl/m-Me (13)], and the reaction proceeds as stereoselective 1,3-dipolar cycloaddition to one of the EtCN ligands accomplishing the monocycloadducts trans-[PtCl4(EtCN){N(a)═C(Et)N(b)C(O)CH(NHC(O)C6H4R(3))CH(C6H4R(2))N(c)C(d)HR(1)}])((a-d;b-c)) [R(1)/R(2)/R(3) = p-Me/H/H (15); p-Me/p-Me/H (16); p-Me/p-MeO/H (17); p-Me/p-Cl/p-Cl (18); p-MeO/p-Me/H (19); p-MeO/p-Cl/m-Me (20)]. Inspection of the obtained and literature data indicate that the cycloaddition of the azomethine imines to the C≡N bonds of HCN and of Pt(IV)-bound EtCN has different regioselectivity leading to Δ(2)-1,2,3-triazolines and Δ(2)-1,2,4-triazolines, respectively. Platinum(II) species trans-[PtCl2(EtCN){N(a)═C(Et)N(b)C(O)CH(NHC(O)C6H4R(3))CH(C6H4R(2))N(c)C(d)HR(1)}]((a-d;b-c)) [R(1)/R(2)/R(3) = p-Me/H/H (21); p-Me/p-Me/H (22); p-Me/p-MeO/H (23); p-Me/p-Cl/p-Cl (24); p-MeO/p-Me/H (25); p-MeO/p-Cl/m-Me (26)] were obtained by a one-pot procedure from 14 and 8-13 followed by addition of the phosphorus ylide Ph3P═CHCO2Me. Δ(2)-1,2,4-Triazolines N(a)═C(Et)N(b)C(O)CH(NHC(O)C6H4R(3))CH(C6H4R(2))N(c)C(d)HR(1(a-d;b-c)) [R(1)/R(2)/R(3) = p-Me/H/H (27); p-Me/p-Me/H (28); p-Me/p-MeO/H (29); p-Me/p-Cl/p-Cl (30); p-MeO/p-Me/H (31); p-MeO/p-Cl/m-Me (32)] were liberated from 21-26 by the treatment with bis(diphenylphosphyno)ethane (dppe). Platinum(II) complexes 21-26 were characterized by elemental analyses (C, H, N), high-resolution electrospray ionization mass spectrometry (ESI-MS), and IR and (1)H and (13)C{(1)H} NMR spectroscopies and single crystal X-ray diffraction in the solid state for 25·CH3OH, 26·(CHCl3)0.84. The structure of 26 was also determined by COSY-90 and NOESY NMR methods in solution. Quantitative evaluation of several pairs of interproton distances obtained by NMR and X-ray diffraction agrees well with each other and with those obtained by the MM+ calculation method. Platinum(IV) complexes 15-20 were characterized by (1)H NMR spectroscopy. Metal-free 6,7-dihydropyrazolo[1,2-a][1,2,4]triazoles (27-32) were characterized by high-resolution ESI-MS and IR and (1)H and (13)C{(1)H} NMR spectroscopies and single crystal X-ray diffraction for 29·CDCl3. Theoretical density functional theory calculations were carried out for the investigation of the reaction mechanism, interpretation of the reactivity of Pt-bound and free nitriles toward azomethine imines and analysis of the regio- and stereoselectivity origin.

13.
Dalton Trans ; 43(42): 15798-811, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25220287

RESUMO

The cyanamides NCNR2 (R2 = Me2, Ph2, C5H10) react with ZnX2 (X = Cl, Br, I) in a 2 : 1 molar ratio at RT, giving a family of zinc(ii) complexes [ZnX2(NCNR2)2] (R2 = Me2, X = Cl , X = Br , X = I ; R2 = C5H10, X = Cl , X = Br ; X = I ; R2 = Ph2, X = Cl , X = Br , X = I ; 75-92% yields). Complexes and undergo ligand redistribution in wet CH2Cl2 solutions giving the [Zn(NCNPh2)4(H2O)2][Zn2(µ-X)2X4] (X = Cl , Br ) species that were characterized by (1)H NMR, HRESI-MS, and X-ray diffraction. Halide abstraction from by the action of AgCF3SO3 or treatment of Zn(CF3SO3)2 with NCNR2 (R2 = Me2, C5H10) leads to labile complexes [Zn(CF3SO3)2(NCNR2)3] (R2 = Me2, ; C5H10, ). Crystallization of from wet CH2Cl2 or from the reaction mixture gave [Zn(NCNMe2)3(H2O)2](SO3CF3)2 () or [Zn(CF3SO3)2(NCNMe2)2]∞ (), whose structures were determined by X-ray diffraction. The Zn(II)-mediated hydration was observed for the systems comprising ZnX2 (X = Cl, Br, I), 2 equiv. NCNR2 (R2 = Me2, C5H10, Ph2) and ca. 40-fold excess of water and conducted in acetone at 60 °C (R2 = Me2, C5H10) or 80 °C (R2 = Ph2) in closed vials, and it gives the urea complexes [ZnX2{OC(NR2)NH2}] (R2 = Me2, X = Cl , X = Br , X = I ; R = C5H10, X = Cl , X = Br ; X = I ; R2 = Ph2, X = Cl , X = Br , X = I ; 57-81%). In contrast to the Zn(II)-mediated hydration of conventional nitriles, which proceeds only in the presence of co-catalyzing oximes or carboxamides, the reaction with cyanamides does not require any co-catalyst. Complexes , were characterized by (1)H, (13)C{(1)H} NMR, IR, HRESI-MS, and X-ray crystallography (for , , , , and ), whereas and were characterized by HRESI(+)-MS and (1)H and (13)C{(1)H} NMR (for ). The structural features of the cyanamide complexes , , , and were interpreted by theoretical calculations at the DFT level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA