RESUMO
The increasing prevalence of neurodevelopmental disorders has highlighted the need for improved testing methods to determine developmental neurotoxicity (DNT) hazard for thousands of chemicals. This paper proposes the integration of organoid intelligence (OI); leveraging brain organoids to study neuroplasticity in vitro, into the DNT testing paradigm. OI brings a new approach to measure the impacts of xenobiotics on plasticity mechanisms - a critical biological process that is not adequately covered in current DNT in vitro assays. Finally, the integration of artificial intelligence (AI) techniques will further facilitate the analysis of complex brain organoid data to study these plasticity mechanisms.
RESUMO
The role of central nervous system (CNS) glia in sustaining self-autonomous inflammation and driving clinical progression in multiple sclerosis (MS) is gaining scientific interest. We applied a single transcription factor ( SOX10 )-based protocol to accelerate oligodendrocyte differentiation from hiPSC-derived neural precursor cells, generating self-organizing forebrain organoids. These organoids include neurons, astrocytes, oligodendroglia, and hiPSC-derived microglia to achieve immunocompetence. Over 8 weeks, organoids reproducibly generated mature CNS cell types, exhibiting single-cell transcriptional profiles similar to the adult human brain. Exposed to inflamed cerebrospinal fluid (CSF) from MS patients, organoids properly mimic macroglia-microglia neuro-degenerative phenotypes and intercellular communication seen in chronic active MS. Oligodendrocyte vulnerability emerged by day 6 post-MS-CSF exposure, with nearly 50% reduction. Temporally-resolved organoid data support and expand on the role of soluble CSF mediators in sustaining downstream events leading to oligodendrocyte death and inflammatory neurodegeneration. Such findings support implementing this organoid model for drug screening to halt inflammatory neurodegeneration.
RESUMO
Brain Microphysiological Systems including neural organoids derived from human induced pluripotent stem cells offer a unique lens to study the intricate workings of the human brain. This paper investigates the foundational elements of learning and memory in neural organoids, also known as Organoid Intelligence by quantifying immediate early gene expression, synaptic plasticity, neuronal network dynamics, and criticality to demonstrate the utility of these organoids in basic science research. Neural organoids showed synapse formation, glutamatergic and GABAergic receptor expression, immediate early gene expression basally and evoked, functional connectivity, criticality, and synaptic plasticity in response to theta-burst stimulation. In addition, pharmacological interventions on GABAergic and glutamatergic receptors, and input specific theta-burst stimulation further shed light on the capacity of neural organoids to mirror synaptic modulation and short-term potentiation, demonstrating their potential as tools for studying neurophysiological and neurological processes and informing therapeutic strategies for diseases.
RESUMO
The role of central nervous system (CNS) glia in sustaining self-autonomous inflammation and driving clinical progression in multiple sclerosis (MS) is gaining scientific interest. We applied a single transcription factor (SOX10)-based protocol to accelerate oligodendrocyte differentiation from human induced pluripotent stem cell (hiPSC)-derived neural precursor cells, generating self-organizing forebrain organoids. These organoids include neurons, astrocytes, oligodendroglia, and hiPSC-derived microglia to achieve immunocompetence. Over 8 weeks, organoids reproducibly generated mature CNS cell types, exhibiting single-cell transcriptional profiles similar to the adult human brain. Exposed to inflamed cerebrospinal fluid (CSF) from patients with MS, organoids properly mimic macroglia-microglia neurodegenerative phenotypes and intercellular communication seen in chronic active MS. Oligodendrocyte vulnerability emerged by day 6 post-MS-CSF exposure, with nearly 50% reduction. Temporally resolved organoid data support and expand on the role of soluble CSF mediators in sustaining downstream events leading to oligodendrocyte death and inflammatory neurodegeneration. Such findings support the implementation of this organoid model for drug screening to halt inflammatory neurodegeneration.
Assuntos
Encéfalo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Esclerose Múltipla , Neuroglia , Organoides , Fenótipo , Humanos , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Organoides/patologia , Organoides/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Microglia/metabolismo , Microglia/patologiaRESUMO
The Human Exposome Project aims to revolutionize our understanding of how environmental exposures affect human health by systematically cataloging and analyzing the myriad exposures individuals encounter throughout their lives. This initiative draws a parallel with the Human Genome Project, expanding the focus from genetic factors to the dynamic and complex nature of environ-mental interactions. The project leverages advanced methodologies such as omics technologies, biomonitoring, microphysiological systems (MPS), and artificial intelligence (AI), forming the foun-dation of exposome intelligence (EI) to integrate and interpret vast datasets. Key objectives include identifying exposure-disease links, prioritizing hazardous chemicals, enhancing public health and regulatory policies, and reducing reliance on animal testing. The Implementation Moonshot Project for Alternative Chemical Testing (IMPACT), spearheaded by the Center for Alternatives to Animal Testing (CAAT), is a new element in this endeavor, driving the creation of a public-private part-nership toward a Human Exposome Project with a stakeholder forum in 2025. Establishing robust infrastructure, fostering interdisciplinary collaborations, and ensuring quality assurance through sys-tematic reviews and evidence-based frameworks are crucial for the project's success. The expected outcomes promise transformative advancements in precision public health, disease prevention, and a more ethical approach to toxicology. This paper outlines the strategic imperatives, challenges, and opportunities that lie ahead, calling on stakeholders to support and participate in this landmark initiative for a healthier, more sustainable future.
This paper outlines a proposal for a "Human Exposome Project" to comprehensively study how environmental exposures affect human health throughout our lives. The exposome refers to all the environmental factors we are exposed to, from chemicals to diet to stress. The project aims to use advanced technologies like artificial intelligence, lab-grown mini-organs, and detailed biological measurements to map how different exposures impact our health. This could help identify causes of diseases and guide better prevention strategies. Key goals include finding links between specific exposures and health problems, determining which chemicals are most concerning, improving public health policies, and reducing animal testing. The project requires collaboration between researchers, government agencies, companies, and others. While ambitious, this effort could revolutionize our understanding of environmental health risks. The potential benefits for improving health and preventing disease make this an important endeavor to a precise and comprehensive approach to public health and disease prevention.
Assuntos
Alternativas aos Testes com Animais , Exposição Ambiental , Expossoma , Humanos , Animais , Substâncias Perigosas/toxicidade , Saúde Pública , Monitoramento Ambiental/métodosRESUMO
Disagreements about language use are common both between and within fields. Where interests require multidisciplinary collaboration or the field of research has the potential to impact society at large, it becomes critical to minimize these disagreements where possible. The development of diverse intelligent systems, regardless of the substrate (e.g., silicon vs. biology), is a case where both conditions are met. Significant advancements have occurred in the development of technology progressing toward these diverse intelligence systems. Whether progress is silicon based, such as the use of large language models, or through synthetic biology methods, such as the development of organoids, a clear need for a community-based approach to seeking consensus on nomenclature is now vital. Here, we welcome collaboration from the wider scientific community, proposing a pathway forward to achieving this intention, highlighting key terms and fields of relevance, and suggesting potential consensus-making methods to be applied.
RESUMO
Developmental neurotoxicity (DNT) testing has seen enormous progress over the last two decades. Preceding even the publication of the animal-based OECD test guideline for DNT testing in 2007, a series of non-animal technology workshops and conferences that started in 2005 has shaped a community that has delivered a comprehensive battery of in vitro test methods (DNT IVB). Its data interpretation is now covered by a very recent OECD guidance (No. 377). Here, we overview the progress in the field, focusing on the evolution of testing strategies, the role of emerging technologies, and the impact of OECD test guidelines on DNT testing. In particular, this is an example of the targeted development of an animal-free testing approach for one of the most complex hazards of chemicals to human health. These developments started literally from a blank slate, with no proposed alternative methods available. Over two decades, cutting-edge science enabled the design of a testing approach that spares animals and enables throughput to address this challenging hazard. While it is evident that the field needs guidance and regulation, the massive economic impact of decreased human cognitive capacity caused by chemical exposure should be prioritized more highly. Beyond this, the claim to fame of DNT in vitro testing is the enormous scientific progress it has brought for understanding the human brain, its development, and how it can be perturbed.
Developmental neurotoxicity (DNT) testing predicts the hazard of exposure to chemicals to human brain development. Comprehensive advanced non-animal testing strategies using cutting-edge technology can now replace animal-based approaches to assess this complex hazard. These strategies can assess large numbers of chemicals more accurately and efficiently than the animal-based approach. Recent OECD test guidance has formalized this battery of in vitro test methods for DNT, marking a pivotal achievement in the field. The shift towards non-animal testing reflects both a commitment to animal welfare and a growing recognition of the economic and public health impacts associated with impaired cognitive function caused by chemical exposures. These innovations ultimately contribute to safer chemical management and better protection of human health, especially during the vulnerable stages of brain development.
Assuntos
Síndromes Neurotóxicas , Testes de Toxicidade , Animais , Alternativas aos Testes com Animais , Modelos Animais , Síndromes Neurotóxicas/etiologiaRESUMO
The absence of non-invasive tests that can monitor the status of the brain is a major obstacle for psychiatric care. In order to address this need, we assessed the feasibility of using tissue-specific gene expression to determine the origin of extracellular vesicle (EV) mRNAs in peripheral blood. Using the placenta as a model, we discovered that 26 messenger RNAs that are specifically expressed in the placenta are present in EVs circulating in maternal blood. Twenty-three of these transcripts were either exclusively or highly expressed in maternal blood during pregnancy only and not in the postpartum period, verifying the feasibility of using tissue-specific gene expression to infer the tissue of origin for EV mRNAs. Using the same bioinformatic approach, which provides better specificity than isolating L1 cell-adhesion molecule containing EVs, we discovered that 181 mRNAs that are specifically expressed in the female brain are also present in EVs circulating in maternal blood. Gene set enrichment analysis revealed that these transcripts, which are involved in synaptic functions and myelination, are enriched for genes implicated in mood disorders, schizophrenia, and substance use disorders. The EV mRNA levels of 13 of these female brain-specific transcripts are associated with postpartum depression (adjusted p-vals = 3 × 10-5 to 0.08), raising the possibility that they can be used to infer the state of the brain. In order to determine the extent to which EV mRNAs reflect transcription in the brain, we compared mRNAs isolated from cells and EVs in an iPSC-derived brain microphysiological system differentiated for 3 and 9 weeks. We discovered that, although cellular and extracellular mRNA levels are not identical, they do correlate, and it is possible to extrapolate cellular RNA expression changes in the brain via EV mRNA levels. Our findings bring EV mRNAs to the forefront of peripheral biomarker development efforts in psychiatric diseases by demonstrating the feasibility of inferring transcriptional changes in the brain via blood EV mRNA levels.
Assuntos
Biomarcadores , Encéfalo , Vesículas Extracelulares , RNA Mensageiro , Feminino , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , RNA Mensageiro/metabolismo , Encéfalo/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Gravidez , Placenta/metabolismo , Expressão Gênica/genética , Adulto , Depressão Pós-Parto/genética , Depressão Pós-Parto/metabolismoRESUMO
Brain organoids are 3D in vitro culture systems derived from human pluripotent stem cells that self-organize to model features of the (developing) human brain. This review examines the techniques behind organoid generation, their current and potential applications, and future directions for the field. Brain organoids possess complex architecture containing various neural cell types, synapses, and myelination. They have been utilized for toxicology testing, disease modeling, infection studies, personalized medicine, and gene-environment interaction studies. An emerging concept termed Organoid Intelligence (OI) combines organoids with artificial intelligence systems to generate learning and memory, with the goals of modeling cognition and enabling biological computing applications. Brain organoids allow neuroscience studies not previously achievable with traditional techniques, and have the potential to transform disease modeling, drug development, and the understanding of human brain development and disorders. The aspirational vision of OI parallels the origins of artificial intelligence, and efforts are underway to map a roadmap toward its realization. In summary, brain organoids constitute a disruptive technology that is rapidly advancing and gaining traction across multiple disciplines.
Assuntos
Encéfalo , Organoides , Organoides/citologia , Organoides/metabolismo , Humanos , Encéfalo/citologia , Inteligência Artificial , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , AnimaisRESUMO
Brain microphysiological systems (bMPS) recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures and have become increasingly relevant for the study of neurological function in health and disease. Existing 3D brain models vary in reflecting the relative populations of different cell types present in the human brain. Most models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations. Here, by means of a chemically defined glial-enriched medium (GEM), an improved method to expand the population of astrocytes and oligodendrocytes without compromising neuronal differentiation in bMPS, is presented. An important finding is that astrocytes also change in morphology when cultured in GEM, more closely recapitulating primary culture astrocytes. GEM bMPS are electro-chemically active and show different patterns of calcium staining and flux. Synaptic vesicles and terminals observed by electron microscopy are also present. No significant changes in neuronal differentiation are observed by gene expression, however, GEM enhanced neurite outgrowth and cell migration, and differentially modulated neuronal maturation in two different cell lines. These results have the potential to significantly improve functionality of bMPS for the study of neurological diseases and drug discovery, contributing to the unmet need for safe human models.
RESUMO
Brain microphysiological systems (bMPS), which recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures, have become a practical, non-invasive, and increasingly relevant platform for the study of neurological function in health and disease. These models include 3D spheroids and organoids as well as organ-on-chip models. Currently, however, existing 3D brain models vary in reflecting the relative populations of the different cell types present in the human brain. Most of the models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations. Here, by means of a chemically defined glial-enriched medium (GEM), we present an improved method to expand the population of astrocytes and oligodendrocytes without compromising neuronal differentiation in bMPS. An important finding is that astrocytes not only increased in number but also changed in morphology when cultured in GEM, more closely recapitulating primary culture astrocytes. We demonstrate oligodendrocyte and astrocyte enrichment in GEM bMPS using a variety of complementary methods. We found that GEM bMPS are electro-chemically active and showed different patterns of Ca +2 staining and flux. Synaptic vesicles and terminals observed by electron microscopy were also present. No significant changes in neuronal differentiation were observed by gene expression, however, GEM enhanced neurite outgrowth and cell migration, and differentially modulated neuronal maturation in two different iPSC lines. Our results have the potential to significantly improve in vivo-like functionality of bMPS for the study of neurological diseases and drug discovery, contributing to the unmet need for safe human models.
RESUMO
Human health is determined both by genetics (G) and environment (E). This is clearly illustrated in groups of individuals who are exposed to the same environmental factor showing differential responses. A quantitative measure of the gene-environment interactions (GxE) effects has not been developed and in some instances, a clear consensus on the concept has not even been reached; for example, whether cancer is predominantly emerging from "bad luck" or "bad lifestyle" is still debated. In this article, we provide a panel of examples of GxE interaction as drivers of pathogenesis. We highlight how epigenetic regulations can represent a common connecting aspect of the molecular bases. Our argument converges on the concept that the GxE is recorded in the cellular epigenome, which might represent the key to deconvolute these multidimensional intricated layers of regulation. Developing a key to decode this epigenetic information would provide quantitative measures of disease risk. Analogously to the epigenetic clock introduced to estimate biological age, we provocatively propose the theoretical concept of an "epigenetic score-meter" to estimate disease risk.
Assuntos
Interação Gene-Ambiente , Neoplasias , Humanos , Epigênese GenéticaRESUMO
To transfer toxicological findings from model systems, e.g. animals, to humans, standardized safety factors are applied to account for intra-species and inter-species variabilities. An alternative approach would be to measure and model the actual compound-specific uncertainties. This biological concept assumes that all observed toxicities depend not only on the exposure situation (environment = E), but also on the genetic (G) background of the model (G × E). As a quantitative discipline, toxicology needs to move beyond merely qualitative G × E concepts. Research programs are required that determine the major biological variabilities affecting toxicity and categorize their relative weights and contributions. In a complementary approach, detailed case studies need to explore the role of genetic backgrounds in the adverse effects of defined chemicals. In addition, current understanding of the selection and propagation of adverse outcome pathways (AOP) in different biological environments is very limited. To improve understanding, a particular focus is required on modulatory and counter-regulatory steps. For quantitative approaches to address uncertainties, the concept of "genetic" influence needs a more precise definition. What is usually meant by this term in the context of G × E are the protein functions encoded by the genes. Besides the gene sequence, the regulation of the gene expression and function should also be accounted for. The widened concept of past and present "gene expression" influences is summarized here as Ge. Also, the concept of "environment" needs some re-consideration in situations where exposure timing (Et) is pivotal: prolonged or repeated exposure to the insult (chemical, physical, life style) affects Ge. This implies that it changes the model system. The interaction of Ge with Et might be denoted as Ge × Et. We provide here general explanations and specific examples for this concept and show how it could be applied in the context of New Approach Methodologies (NAM).
Assuntos
Rotas de Resultados Adversos , Humanos , Animais , Incerteza , Modelos BiológicosRESUMO
Understanding brain function remains challenging as work with human and animal models is complicated by compensatory mechanisms, while in vitro models have been too simple until now. With the advent of human stem cells and the bioengineering of brain microphysiological systems (MPS), understanding how both cognition and long-term memory arise is now coming into reach. We suggest combining cutting-edge AI with MPS research to spearhead organoid intelligence (OI) as synthetic biological intelligence. The vision is to realize cognitive functions in brain MPS and scale them to achieve relevant short- and long-term memory capabilities and basic information processing as the ultimate functional experimental models for neurodevelopment and neurological function and as cell-based assays for drug and chemical testing. By advancing the frontiers of biological computing, we aim to (a) create models of intelligence-in-a-dish to study the basis of human cognitive functions, (b) provide models to advance the search for toxicants contributing to neurological diseases and identify remedies for neurological maladies, and (c) achieve relevant biological computational capacities to complement traditional computing. Increased understanding of brain functionality, in some respects still superior to today's supercomputers, may allow to imitate this in neuromorphic computer architectures or might even open up biological computing to complement silicon computers. At the same time, this raises ethical questions such as where sentience and consciousness start and what the relationship between a stem cell donor and the respective OI system is. Such ethical discussions will be critical for the socially acceptable advance of brain organoid models of cognition.
Assuntos
Alternativas aos Testes com Animais , Sistemas Microfisiológicos , Animais , Humanos , Encéfalo , Inteligência , OrganoidesRESUMO
The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22-24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.
RESUMO
Human brain organoids, aka cerebral organoids or earlier "mini-brains", are 3D cellular models that recapitulate aspects of the developing human brain. They show tremendous promise for advancing our understanding of neurodevelopment and neurological disorders. However, the unprecedented ability to model human brain development and function in vitro also raises complex ethical, legal, and social challenges. Organoid Intelligence (OI) describes the ongoing movement to combine such organoids with Artificial Intelligence to establish basic forms of memory and learning. This article discusses key issues regarding the scientific status and prospects of brain organoids and OI, conceptualizations of consciousness and the mind-brain relationship, ethical and legal dimensions, including moral status, human-animal chimeras, informed consent, and governance matters, such as oversight and regulation. A balanced framework is needed to allow vital research while addressing public perceptions and ethical concerns. Interdisciplinary perspectives and proactive engagement among scientists, ethicists, policymakers, and the public can enable responsible translational pathways for organoid technology. A thoughtful, proactive governance framework might be needed to ensure ethically responsible progress in this promising field.
RESUMO
In this issue of Neuron, Kagan et al.1 implement learning-in-a-dish as an important step toward organoid intelligence. These systems may complement the study of molecular and cellular mechanisms of cognition and allow innovations in pharmacological and toxicological studies of neurodevelopmental or neurodegenerative disorders as well as advances in biological computing.