Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Neurol ; 379: 114888, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009176

RESUMO

Traumatic brain injury (TBI) is one of the most common causes of emergency room visits in children, and it is a leading cause of death in juveniles in the United States. Similarly, a high proportion of this population consumes diets that are high in saturated fats, and millions of children are overweight or obese. The goal of the present study was to assess the relationship between diet and TBI on cognitive and cerebrovascular outcomes in juvenile rats. In the current study, groups of juvenile male Long Evans rats were subjected to either mild TBI via the Closed-Head Injury Model of Engineered Rotational Acceleration (CHIMERA) or underwent sham procedures. The animals were provided with either a combination of high-fat diet and a mixture of high-fructose corn syrup (HFD/HFCS) or a standard chow diet (CH) for 9 days prior to injury. Prior to injury, the animals were trained on the Morris water maze for three consecutive days, and they underwent a post-injury trial on the day of the injury. Immediately after TBI, the animals' righting reflexes were tested. Four days post-injury, the animals were euthanized, and brain samples and blood plasma were collected for qRT-PCR, immunohistochemistry, and triglyceride assays. Additional subsets of animals were used to investigate cerebrovascular perfusion using Laser Speckle and perform immunohistochemistry for endothelial cell marker RECA. Following TBI, the righting reflex was significantly increased in TBI rats, irrespective of diet. The TBI worsened the rats' performance in the post-injury trial of the water maze at 3 h, p(injury) < 0.05, but not at 4 days post-injury. Reduced cerebrovascular blood flow using Laser Speckle was demonstrated in the cerebellum, p(injury) < 0.05, but not foci of the cerebral cortices or superior sagittal sinus. Immunoreactive staining for RECA in the cortex and corpus callosum was significantly reduced in HFD/HFCS TBI rats, p < 0.05. qRT-PCR showed significant increases in APOE, CREB1, FCGR2B, IL1B, and IL6, particularly in the hippocampus. The results from this study offer robust evidence that HFD/HFCS negatively influences TBI outcomes with respect to cognition and cerebrovascular perfusion of relevant brain regions in the juvenile rat.


Assuntos
Lesões Encefálicas Traumáticas , Dieta Hiperlipídica , Modelos Animais de Doenças , Ratos Long-Evans , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Ratos , Lesões Encefálicas Traumáticas/patologia , Traumatismos Cranianos Fechados/patologia , Traumatismos Cranianos Fechados/complicações , Aprendizagem em Labirinto/fisiologia
2.
J Neurosci Res ; 102(7): e25364, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953607

RESUMO

Traumatic brain injury (TBI) is a condition that occurs commonly in children from infancy through adolescence and is a global health concern. Pediatric TBI presents with a bimodal age distribution, with very young children (0-4 years) and adolescents (15-19 years) more commonly injured. Because children's brains are still developing, there is increased vulnerability to the effects of head trauma, which results in entirely different patterns of injury than in adults. Pediatric TBI has a profound and lasting impact on a child's development and quality of life, resulting in long-lasting consequences to physical, cognitive, and emotional development. Chronic issues like learning disabilities, behavioral problems, and emotional disturbances can develop. Early intervention and ongoing support are critical for minimizing these long-term deficits. Many animal models of TBI exist, and each varies significantly, displaying different characteristics of clinical TBI. The neurodevelopment differs in the rodent from the human in timing and effect, so TBI outcomes in the juvenile rodent can thus vary from the human child. The current review compares findings from preclinical TBI work in juvenile and adult rodents to clinical TBI research in pediatric and adult humans. We focus on the four brain regions most affected by TBI: the prefrontal cortex, corpus callosum, hippocampus, and hypothalamus. Each has its unique developmental projections and thus is impacted by TBI differently. This review aims to compare the healthy neurodevelopment of these four brain regions in humans to the developmental processes in rodents.


Assuntos
Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Lesões Encefálicas Traumáticas/patologia , Humanos , Animais , Criança , Adulto , Adolescente , Roedores , Encéfalo/patologia , Pré-Escolar
3.
Brain Sci ; 14(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672047

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of death and disability. TBI is associated with neuroinflammation, but temporal changes in immune and inflammatory signaling following TBI have not been fully elucidated. Furthermore, there have been no previous studies on changes in immune cell populations following TBI via the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). The current study aimed to determine the time course changes to inflammatory marker mRNA expression in the acute period following TBI in juvenile rats and to determine acute changes to brain and circulating immune cell populations. For this study, post-natal day (PND)-30 male Long Evans rats sustained a TBI or Sham TBI and were euthanized at 0, 3, 6, 12, 24, or 96 h post-injury. Prefrontal cortex and hippocampus samples were used to determine mRNA expression changes of inflammatory factors. The mRNA expression of the pro-inflammatory cytokine TNF-α was significantly elevated at 6 h post-injury in both regions evaluated. To evaluate immune cell populations, male Long Evans rats were euthanized at 48 h post-injury, and brain and blood samples were used for cell sorting by marker-specific antibodies. In the peripheral blood, there was an elevation in CD3+ total T cells, CD45R+ total B cells, and CD3+CD4+ helper T cells in the TBI subjects. However, there were no changes to natural killer cells or CD3+CD8+ cytotoxic T cell populations. In the brain, there was a reduction in CD11b/c+ monocytes/macrophages, but no changes in other immune cell populations. At 48 h post-injury, the TBI subjects also demonstrated expansion of the thymic medulla. These changes in the cerebral and blood immune cell populations and thymic medulla expansion may implicate the subacute recovery timeframe as a vulnerable window for the immune system in the pediatric population.

4.
Physiol Genomics ; 56(4): 301-316, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145288

RESUMO

The gut-brain axis interconnects the central nervous system (CNS) and the commensal bacteria of the gastrointestinal tract. The composition of the diet consumed by the host influences the richness of the microbial populations. Traumatic brain injury (TBI) produces profound neurocognitive damage, but it is unknown how diet influences the microbiome following TBI. The present work investigates the impact of a chow diet versus a 60% fat diet (HFD) on fecal microbiome populations in juvenile rats following TBI. Twenty-day-old male rats were placed on one of two diets for 9 days before sustaining either a Sham or TBI via the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). Fecal samples were collected at both 1- and 9-days postinjury. Animals were cognitively assessed in the novel object recognition tests at 8 days postinjury. Fecal microbiota DNA was isolated and sequenced. Twenty days of HFD feeding did not alter body weight, but fat mass was elevated in HFD compared with Chow rats. TBI animals had a greater percentage of entries to the novel object quadrant than Sham counterparts, P < 0.05. The Firmicutes/Bacteroidetes ratio was significantly higher in TBI than in the Sham, P < 0.05. Microbiota of the Firmicutes lineage exhibited perturbations by both injury and diet that were sustained at both time points. Linear regression analyses were performed to associate bacteria with metabolic and neurocognitive endpoints. For example, counts of Lachnospiraceae were negatively associated with percent entries into the novel object quadrant. Taken together, these data suggest that both diet and injury produce robust shifts in microbiota, which may have long-term implications for chronic health.NEW & NOTEWORTHY Traumatic brain injury (TBI) produces memory and learning difficulties. Diet profoundly influences the populations of gut microbiota. Following traumatic brain injury in a pediatric model consuming either a healthy or high-fat diet (HFD), significant shifts in bacterial populations occur, of which, some are associated with diet, whereas others are associated with neurocognitive performance. More work is needed to determine whether these microbes can therapeutically improve learning following trauma to the brain.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Microbioma Gastrointestinal , Humanos , Criança , Ratos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/genética , Bactérias , Lesões Encefálicas Traumáticas/microbiologia
5.
J Neurotrauma ; 40(11-12): 1216-1227, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36680746

RESUMO

Abstract Traumatic brain injury (TBI) is one of the leading causes of death for children in the United States. Juveniles are more likely to sustain TBIs than most other age groups, and TBI has been shown to result in increased anxiety and stress behaviors. In addition, the hypothalamic-pituitary-adrenal (HPA) axis has previously been shown to become dysregulated after a TBI. Further, many children consume diets high in saturated fats and refined sugars, which are also connected to alterations in HPA axis function and behavior disorders. The goal of the current study was to identify a potential relationship between high-fat diet (HFD) consumption and TBI on HPA axis function in juvenile rats. In the present study, male juvenile Long-Evans rats were fed either a combination of an HFD with a high-fructose corn syrup solution or a standard chow diet. On post-natal Day 30, subjects sustained either a sham TBI or a TBI via the Closed-Head Injury Model of Engineered Rotational Acceleration (CHIMERA). Subjects participated in a trial of the open field test (OFT) following injury. In addition, some rats performed in an acute restraint stress test. All subjects were euthanized 7 days post-injury. Brain and blood plasma samples were collected for use in real-time polymerase chain reaction (RT-PCR), immunohistochemistry, and corticosterone or adrenocorticotropic hormone (ACTH) assays. Immediately following TBI, injured juveniles had increased time to righting and walking, with HFD-fed TBI rats having increased time to walking over Chow-fed TBI rats. HFD-fed TBI rats had a reduced number of entries to the center of the OFT, in addition to reduced time spent in the center compared with HFD Sham controls and Chow TBI rats. During the acute restraint stress test, HFD-fed TBI rats had elevated pre-stress ACTH and corticosterone and post-stress ACTH levels. Pre-stress ACTH levels were significantly elevated in HFD TBI compared with Chow TBI. Further, pre-stress ACTH:corticosterone ratios were elevated in HFD TBI compared with Chow TBI. cFos immunoreactivity in the paraventricular nucleus (PVN) of the hypothalamus following the acute restraint stress test was elevated in HFD-fed TBI rats. HFD TBI rats had greater activation of cFos in the PVN compared with Chow TBI. In addition, RT-PCR showed significantly reduced expression of relevant HPA axis genes, NR3C1, NR3C2, and CRHR2, in the hypothalamus of TBI subjects compared with Sham subjects. Further, AVP and CRHR2 in the hypothalamus were significantly reduced in HFD TBI compared with Chow TBI. These results offer evidence that TBI paired with high-fat diet consumption can cause HPA axis dysfunction, resulting in more anxiety-like behaviors.


Assuntos
Lesões Encefálicas Traumáticas , Dieta Hiperlipídica , Ratos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Sistema Hipotálamo-Hipofisário/metabolismo , Corticosterona , Ratos Long-Evans , Sistema Hipófise-Suprarrenal , Hormônio Adrenocorticotrópico , Lesões Encefálicas Traumáticas/metabolismo
6.
Biosci Rep ; 43(1)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36472154

RESUMO

The lifetime risk for Type 2 diabetes mellitus remains higher in people with spinal cord injuries (SCIs) than in the able-bodied population. However, the mechanisms driving this disparity remain poorly understood. The goal of the present study was to evaluate the impact of a palatable high-fat diet (HFD) on glycemic regulation using a rodent model of moderate thoracic contusion. Animals were placed on either Chow or HFD and tolerance to glucose, insulin, and ENSURE mixed meal were investigated. Important targets in the gut-brain axis were investigated. HFD consumption equally induced weight gain in SCI and naïve rats over chow (CH) rats. Elevated blood glucose was observed during intraperitoneal glucose tolerance test in HFD-fed rats over CH-fed rats. Insulin tolerance test (ITT) was unremarkable among the three groups. Gavage of ENSURE resulted in high glucagon-like peptide 1 (GLP-1) release from SCI rats over naïve controls. An elevation in terminal total GLP-1 was measured, with a marked reduction in circulating dipeptidyl peptidase 4, the GLP-1 cleaving enzyme, in SCI rats, compared with naïve. Increased glucagon mRNA in the pancreas and reduced immunoreactive glucagon-positive staining in the pancreas in SCI rats compared with controls suggested increased glucagon turnover. Finally, GLP-1 receptor gene expression in the ileum, the primary source of GLP-1 production and release, in SCI rats suggests the responsivity of the gut to altered circulating GLP-1 in the body. In conclusion, the actions of GLP-1 and its preprohormone, glucagon, are markedly uncoupled from their actions on glucose control in the SCI rat. More work is required to understand GLP-1 in the human.


Assuntos
Diabetes Mellitus Tipo 2 , Glucagon , Humanos , Ratos , Animais , Controle Glicêmico , Insulina , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicemia
7.
Physiol Genomics ; 54(10): 402-415, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036458

RESUMO

Chronic spinal cord injury (SCI) results in an increased predisposition to various metabolic problems that can be exacerbated by consuming a diet rich in calories and saturated fat. In addition, gastrointestinal symptoms have been reported after SCI, including intestinal dysbiosis of the gut microbiome. The effects of both diet and SCI on the gut microbiome of adult male Long Evans rats euthanized 16 wk after injury were investigated. The rats were either thoracic spinal contused or received sham procedures. After 12 wk of either a low-fat or high-fat diet, cecal contents were analyzed, revealing significant microbial changes to every taxonomic level below the kingdom level. Shannon α diversity analyses demonstrated a significant difference in diversity between the groups based on the surgical condition of the rats. SCI produced a unique signature of changes in commensal bacteria that were significantly different than Sham. Specific changes in commensal bacteria as a result of diet manipulation had high fidelity with reports in the literature, such as Clostridia, Thiohalorhabdales, and Pseudomonadales. In addition, novel changes in commensal bacteria were identified that are unique dietary influences on SCI. Linear regression analysis on body fat and lean mass showed that a consequence of chronic SCI produces uncoupled associations between some commensal bacteria and body composition. In conclusion, despite tightly controlling the protein content and varying the carbohydrate and fat contents, Sham and SCI rats respond uniquely to diet. These data provide potential direction for therapeutic modulation of the microbiome to improve health and wellness following SCI.


Assuntos
Microbioma Gastrointestinal , Traumatismos da Medula Espinal , Animais , Masculino , Ratos , Bactérias , Carboidratos , Dieta Hiperlipídica , Nutrientes , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA