Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7779, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012180

RESUMO

Astronauts will encounter extended exposure to galactic cosmic radiation (GCR) during deep space exploration, which could impair brain function. Here, we report that in male mice, acute or chronic GCR exposure did not modify reward sensitivity but did adversely affect attentional processes and increased reaction times. Potassium (K+)-stimulation in the prefrontal cortex (PFC) elevated dopamine (DA) but abolished temporal DA responsiveness after acute and chronic GCR exposure. Unlike acute GCR, chronic GCR increased levels of all other neurotransmitters, with differences evident between groups after higher K+-stimulation. Correlational and machine learning analysis showed that acute and chronic GCR exposure differentially reorganized the connection strength and causation of DA and other PFC neurotransmitter networks compared to controls which may explain space radiation-induced neurocognitive deficits.


Assuntos
Radiação Cósmica , Exposição à Radiação , Voo Espacial , Camundongos , Masculino , Animais , Humanos , Astronautas , Radiação Cósmica/efeitos adversos , Cognição
2.
Nature ; 439(7079): 978-82, 2006 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-16495999

RESUMO

The auditory neural code must serve a wide range of auditory tasks that require great sensitivity in time and frequency and be effective over the diverse array of sounds present in natural acoustic environments. It has been suggested that sensory systems might have evolved highly efficient coding strategies to maximize the information conveyed to the brain while minimizing the required energy and neural resources. Here we show that, for natural sounds, the complete acoustic waveform can be represented efficiently with a nonlinear model based on a population spike code. In this model, idealized spikes encode the precise temporal positions and magnitudes of underlying acoustic features. We find that when the features are optimized for coding either natural sounds or speech, they show striking similarities to time-domain cochlear filter estimates, have a frequency-bandwidth dependence similar to that of auditory nerve fibres, and yield significantly greater coding efficiency than conventional signal representations. These results indicate that the auditory code might approach an information theoretic optimum and that the acoustic structure of speech might be adapted to the coding capacity of the mammalian auditory system.


Assuntos
Percepção Auditiva/fisiologia , Audição/fisiologia , Modelos Neurológicos , Estimulação Acústica , Adaptação Fisiológica/fisiologia , Algoritmos , Animais , Cóclea/fisiologia , Humanos , Ruído , Sensibilidade e Especificidade , Som , Fala/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA