Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Br J Pharmacol ; 179(22): 5132-5147, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35764296

RESUMO

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH) is a pulmonary vasculature obstructive disease that leads to right heart failure and death. Maresin 1 is an endogenous lipid mediator known to promote inflammation resolution. However, the effect of Maresin 1 on PAH remains unclear. EXPERIMENTAL APPROACH: The serum Maresin 1 concentration was assessed using UPLC. A mouse model of PAH was established by combining the Sugen 5416 injection and hypoxia exposure. After treatment with Maresin 1, the right ventricular systolic pressure (RVSP) and right ventricular function were measured by haemodynamic measurement and echocardiography, respectively. Vascular remodelling was evaluated by histological staining. Confocal microscopy and western blot were used to test related protein expression. In vitro cell migration, proliferation and apoptosis assays were performed in primary rat pulmonary artery smooth muscle cells (PASMCs). Western blotting and siRNA transfection were used to clarify the mechanism of Maresin 1. KEY RESULTS: Endogenous serum Maresin 1 was decreased in PAH patients and mice. Maresin 1 treatment decreased RVSP and attenuated right ventricular dysfunction (RVD) in the murine PAH model. Maresin 1 reversed abnormal changes in pulmonary vascular remodelling, attenuating endothelial to mesenchymal transformation and enhancing apoptosis of α-SMA positive cells. Furthermore, Maresin 1 inhibited PASMC proliferation and promoted apoptosis by inhibiting STAT, AKT, ERK, and FoxO1 phosphorylation via LGR6. CONCLUSION AND IMPLICATIONS: Maresin 1 improved abnormal pulmonary vascular remodelling and right ventricular dysfunction in PAH mice, targeting aberrant PASMC proliferation. This suggests Maresin 1 may have a potent therapeutic effect in vascular disease.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Proliferação de Células , Ácidos Docosa-Hexaenoicos/farmacologia , Camundongos , Miócitos de Músculo Liso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Artéria Pulmonar , RNA Interferente Pequeno/farmacologia , Ratos , Remodelação Vascular , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
2.
Cell Death Discov ; 7(1): 339, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750369

RESUMO

The uncontrolled inflammatory response caused by a disorder in inflammation resolution is one of the reasons for acute respiratory distress syndrome (ARDS). The macrophage pool markedly expands when inflammatory monocytes, known as recruited macrophages, migrate from the circulation to the lung. The persistent presence of recruited macrophages leads to chronic inflammation in the resolution phase of inflammation. On the contrary, elimination of the recruited macrophages at the injury site leads to the rapid resolution of inflammation. Resolvin D1 (RvD1) is an endogenous lipid mediator derived from docosahexaenoic acid. Mice were administered RvD1 via the tail vein 3 and 4 days after stimulation with lipopolysaccharide. RvD1 reduced the levels of the inflammatory factors in the lung tissue, promoted the anti-inflammatory M2 phenotype, and enhanced the phagocytic function of recruited macrophages to alleviate acute lung injury. We also found that the number of macrophages was decreased in BAL fluid after treatment with RvD1. RvD1 increased the apoptosis of recruited macrophages partly via the FasL-FasR/caspase-3 signaling pathway, and this effect could be blocked by Boc-2, an ALX/PRP2 inhibitor. Taken together, our findings reinforce the concept of therapeutic targeting leading to the apoptosis of recruited macrophages. Thus, RvD1 may provide a new therapy for the resolution of ARDS.

3.
J Pharmacol Exp Ther ; 379(2): 156-165, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34465632

RESUMO

Acute respiratory distress syndrome (ARDS), a common and fatal clinical condition, is characterized by the destruction of epithelium and augmented permeability of the alveolar-capillary barrier. Resolvin conjugates in tissue regeneration 1 (RCTR1) is an endogenous lipid mediator derived from docosahexaenoic acid , exerting proresolution effects in the process of inflammation. In our research, we evaluated the role of RCTR1 in alveolar fluid clearance (AFC) in lipopolysaccharide-induced ARDS/acute lung injury (ALI) rat model. Rats were injected with RCTR1 (5 µg/kg) via caudal veins 8 hours after lipopolysaccharide (LPS) (14 mg/kg) treatment, and then AFC was estimated after 1 hour of ventilation. Primary type II alveolar epithelial cells were incubated with LPS (1 ug/ml) with or without RCTR1 (10 nM) for 8 hours. Our results showed that RCTR1 significantly enhanced the survival rate, promoted the AFC, and alleviated LPS-induced ARDS/ALI in vivo. Furthermore, RCTR1 remarkably elevated the protein expression of sodium channels and Na, K-ATPase and the activity of Na, K-ATPase in vivo and in vitro. Additionally, RCTR1 also decreased neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) level via upregulating Ser473-phosphorylated-Akt expression. Besides this, inhibitors of receptor for lipoxin A4 (ALX), cAMP, and phosphatidylinositol 3-kinase (PI3K) (BOC-2, KH-7, and LY294002) notably inhibited the effects of RCTR1 on AFC. In summary, RCTR1 enhances the protein levels of sodium channels and Na, K-ATPase and the Na, K-ATPase activity to improve AFC in ALI through ALX/cAMP/PI3K/Nedd4-2 pathway, suggesting that RCTR1 may become a therapeutic drug for ARDS/ALI. SIGNIFICANCE STATEMENT: RCTR1, an endogenous lipid mediator, enhanced the rate of AFC to accelerate the resolution of inflammation in the LPS-induced murine lung injury model. RCTR1 upregulates the expression of epithelial sodium channels (ENaCs) and Na, K-ATPase in vivo and in vitro to accelerate the AFC. The efficacy of RCTR1 on the ENaC and Na, K-ATPase level was in an ALX/cAMP/PI3K/Nedd4-2-dependent manner.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Agonistas do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/metabolismo , Alvéolos Pulmonares/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Ácidos Docosa-Hexaenoicos/análogos & derivados , Ácidos Docosa-Hexaenoicos/uso terapêutico , Lipopolissacarídeos/toxicidade , Masculino , Alvéolos Pulmonares/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
4.
J Inflamm Res ; 14: 1537-1549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889010

RESUMO

BACKGROUND: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are devastating clinical conditions characterized by pulmonary epithelial damage and protein-rich fluid accumulation in the alveolar spaces. Statins are a class of HMG-CoA reductase inhibitors, which exert cholesterol-lowering and anti-inflammatory effects. METHODS: Rosuvastatin (1 mg/kg) was injected intravenously in rats 12 h before lipopolysaccharide (LPS, 10 mg/kg) administration. Eight hours later after LPS challenge, alveolar fluid clearance (AFC) was detected in rats (n = 6-8). Rosuvastatin (0.3 µmol/mL) and LPS were cultured with primary rat alveolar type II epithelial cells for 8 h. RESULTS: Rosuvastatin obviously improved AFC and attenuated lung-tissue damage in ALI model. Moreover, it enhanced AFC by increasing sodium channel and Na,K-ATPase protein expression. It also up-regulated P-Akt via reducing Nedd4-2 in vivo and in vitro. Furthermore, LY294002 blocked the increase in AFC in response to rosuvastatin. Rosuvastatin-induced AFC was found to be partly rely on sodium channel and Na,K-ATPase expression via the PI3K/AKT/Nedd4-2 pathway. CONCLUSION: In summary, the findings of our study revealed the potential role of rosuvastatin in the management of ALI/ARDS.

5.
J Cell Mol Med ; 24(17): 9646-9657, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32757380

RESUMO

Acute respiratory distress syndrome (ARDS) is a fatal disease characterized by excessive infiltration of inflammatory cells. MCTR1 is an endogenously pro-resolution lipid mediator. We tested the hypothesis that MCTR1 accelerates inflammation resolution through resident M2 alveolar macrophage polarization. The mice received MCTR1 via intraperitoneal administration 3 days after LPS stimulation, and then, the bronchoalveolar lavage (BAL) fluid was collected 24 hours later to measure the neutrophil numbers. Flow cytometry was used to sort the resident and recruited macrophages. Post-treatment with MCTR1 offered dramatic benefits in the resolution phase of LPS-induced lung injury, including decreased neutrophil numbers, reduced BAL fluid protein and albumin concentrations and reduced histological injury. In addition, the expression of the M2 markers Arg1, FIZZ1, Remlα, CD206 and Dectin-1 was increased on resident macrophages in the LPS + MCTR1 group. Resident macrophage depletion abrogated the therapeutic effects of MCTR1, and reinjection of the sorted resident macrophages into the lung decreased neutrophil numbers. Finally, treatment with MCTR1 increased STAT6 phosphorylation. The STAT6 inhibitor AS1517499 abolished the beneficial effects of MCTR1. In conclusion, MCTR1 promotes resident M2 alveolar macrophage polarization via the STAT6 pathway to accelerate resolution of LPS-induced lung injury.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Polaridade Celular/fisiologia , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/metabolismo , Proteínas Oncogênicas/metabolismo , Fator de Transcrição STAT6/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Inflamação/metabolismo , Pulmão/metabolismo , Ativação de Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA