Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806217

RESUMO

The intention of this Special Issue is to provide the reader with an in-depth understanding of the ontogeny, embryology, and homeostasis of bone, with an emphasis on recent research that has contributed to our understanding of the skeletal system at the molecular level [...].


Assuntos
Desenvolvimento Ósseo , Homeostase
2.
Int J Mol Sci ; 21(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322825

RESUMO

This article provides a brief review of the pathophysiology of osteoarthritis and the ontogeny of chondrocytes and details how physical exercise improves the health of osteoarthritic joints and enhances the potential of autologous chondrocyte implants, matrix-induced autologous chondrocyte implants, and mesenchymal stem cell implants for the successful treatment of damaged articular cartilage and subchondral bone. In response to exercise, articular chondrocytes increase their production of glycosaminoglycans, bone morphogenic proteins, and anti-inflammatory cytokines and decrease their production of proinflammatory cytokines and matrix-degrading metalloproteinases. These changes are associated with improvements in cartilage organization and reductions in cartilage degeneration. Studies in humans indicate that exercise enhances joint recruitment of bone marrow-derived mesenchymal stem cells and upregulates their expression of osteogenic and chondrogenic genes, osteogenic microRNAs, and osteogenic growth factors. Rodent experiments demonstrate that exercise enhances the osteogenic potential of bone marrow-derived mesenchymal stem cells while diminishing their adipogenic potential, and that exercise done after stem cell implantation may benefit stem cell transplant viability. Physical exercise also exerts a beneficial effect on the skeletal system by decreasing immune cell production of osteoclastogenic cytokines interleukin-1ß, tumor necrosis factor-α, and interferon-γ, while increasing their production of antiosteoclastogenic cytokines interleukin-10 and transforming growth factor-ß. In conclusion, physical exercise done both by bone marrow-derived mesenchymal stem cell donors and recipients and by autologous chondrocyte donor recipients may improve the outcome of osteochondral regeneration therapy and improve skeletal health by downregulating osteoclastogenic cytokine production and upregulating antiosteoclastogenic cytokine production by circulating immune cells.


Assuntos
Condrócitos/metabolismo , Exercício Físico/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/fisiopatologia , Osteogênese , Condicionamento Físico Animal/fisiologia , Regeneração/genética , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/enzimologia , Cartilagem Articular/patologia , Citocinas/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Metaloproteases/metabolismo , Osteoartrite/enzimologia , Osteoartrite/imunologia , Osteoartrite/terapia , Osteogênese/genética , Osteogênese/imunologia , Osteogênese/fisiologia , Regeneração/imunologia , Regeneração/fisiologia , Transplante de Células-Tronco
3.
Life (Basel) ; 10(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947946

RESUMO

Astronauts are at risk of losing 1.0% to 1.5% of their bone mass for every month they spend in space despite their adherence to diets and exercise regimens designed to protect their musculoskeletal systems. This loss is the result of microgravity-related impairment of osteocyte and osteoblast function and the consequent upregulation of osteoclast-mediated bone resorption. This review describes the ontogeny of osteoclast hematopoietic stem cells and the contributions macrophage colony stimulating factor, receptor activator of the nuclear factor-kappa B ligand, and the calcineurin pathways make in osteoclast differentiation and provides details of bone formation, the osteoclast cytoskeleton, the immune regulation of osteoclasts, and osteoclast mechanotransduction on Earth, in space, and under conditions of simulated microgravity. The article discusses the need to better understand how osteoclasts are able to function in zero gravity and reviews current and prospective therapies that may be used to treat osteoclast-mediated bone disease.

4.
NPJ Microgravity ; 4: 24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534586

RESUMO

We have previously reported that exercise-related secretion of IL-6 by peripheral blood mononuclear cells is proportionate to body weight, suggesting that IL-6 is gravisensitive and that suboptimal production of this key cytokine may contribute to homeostatic dysregulations that occur during spaceflight. This review details what is known about the role of this key cytokine in innate and adaptive immunity, hematopoiesis, and in bone, muscle and metabolic homeostasis on Earth and in the microgravity of space and suggests an experimental approach to confirm or disavow the role of IL-6 in space-related dysregulations.

5.
Clin Mol Allergy ; 8: 3, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20178634

RESUMO

BACKGROUND: Altered levels of Immunoglobulin E (IgE) represent a dysregulation of IgE synthesis and may be seen in a variety of immunological disorders. The object of this review is to summarize the historical and molecular aspects of IgE synthesis and the disorders associated with dysregulation of IgE production. METHODS: Articles published in Medline/PubMed were searched with the keyword Immunoglobulin E and specific terms such as class switch recombination, deficiency and/or specific disease conditions (atopy, neoplasia, renal disease, myeloma, etc.). The selected papers included reviews, case reports, retrospective reviews and molecular mechanisms. Studies involving both sexes and all ages were included in the analysis. RESULTS: Both very low and elevated levels of IgE may be seen in clinical practice. Major advancements have been made in our understanding of the molecular basis of IgE class switching including roles for T cells, cytokines and T regulatory (or Treg) cells in this process. Dysregulation of this process may result in either elevated IgE levels or IgE deficiency. CONCLUSION: Evaluation of a patient with elevated IgE must involve a detailed differential diagnosis and consideration of various immunological and non-immunological disorders. The use of appropriate tests will allow the correct diagnosis to be made. This can often assist in the development of tailored treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA