Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915689

RESUMO

Vaccines are an indispensable public health measure that have enabled the eradication, near elimination, and prevention of a variety of pathogens. As research continues and our understanding of immunization strategies develops, subunit vaccines have emerged as exciting alternatives to existing whole vaccine approaches. Unfortunately, subunit vaccines often possess weak antigenicity, requiring delivery devices and adjuvant supplementation to improve their utility. Peptide amphiphile micelles have recently been shown to function as both delivery devices and self-adjuvanting systems that can be readily associated with molecular adjuvants to further improve vaccine-mediated host immunity. While promising, many "design rules" associated with the plethora of underlying adjustable parameters in the generation of a peptide amphiphile micelle vaccine have yet to be uncovered. This work explores the impact micellar adjuvant complexation method and incorporated antigen type have on their ability to activate dendritic cells and induce antigen specific responses. Interestingly, electrostatic complexation of CpG to micelles resulted in improved in vitro dendritic cell activation over hydrophobic association and antigen|adjuvant co-localization influenced cell-mediated, but not antibody-mediated immune responses. These exciting results complement those previously published to build the framework of a micelle vaccine toolbox that can be leveraged for future disease-specific formulations.

2.
Phys Biol ; 15(6): 065006, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30124431

RESUMO

Peptide amphiphile micelles (PAMs) are attractive vehicles for the delivery of a variety of therapeutic and prophylactic peptides. However, a key limitation of PAMs is their lack of preferential targeting ability. In this paper, we describe our design of a PAM system that incorporates a DNA oligonucleotide amphiphile (antitail amphiphile-AA) to form A/PAMs. A cell-targeting DNA aptamer with a 3' extension sequence (tail) complementary to the AA is annealed to the surface to form aptamer-displaying PAMs (Aptamer~A/PAMs). Aptamer~A/PAMs are small, anionic, stable nanoparticles capable of delivering a large mass percentage peptide amphiphile (PA) compared to targeting DNA components. Aptamer~A/PAMs are stable for over 4 h in the presence of biological fluids. Additionally, the aptamer retains its cell-targeting properties when annealed to the A/PAM, thus leading to enhanced delivery to a specifically-targeted B-cell leukemia cell line. This exciting modular technology can be readily used with a library of different targeting aptamers and PAs, capable of improving the bioavailability and potency of the peptide cargo.


Assuntos
Aptâmeros de Nucleotídeos/química , Sistemas de Liberação de Medicamentos , Micelas , Peptídeos/química , Peptídeos/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura
3.
AAPS J ; 20(4): 73, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858738

RESUMO

Current vaccine research has shifted from traditional vaccines (i.e., whole-killed or live-attenuated) to subunit vaccines (i.e., protein, peptide, or DNA) as the latter is much safer due to delivering only the bioactive components necessary to produce a desirable immune response. Unfortunately, subunit vaccines are very weak immunogens requiring delivery vehicles and the addition of immunostimulatory molecules termed adjuvants to convey protective immunity. An interesting type of delivery vehicle is peptide amphiphile micelles (PAMs), unique biomaterials where the vaccine is part of the nanomaterial itself. Due to the modularity of PAMs, they can be readily modified to deliver both vaccine antigens and adjuvants within a singular construct. Through the co-delivery of a model antigenic epitope (Ovalbumin319-340-OVABT) and a known molecular adjuvant (e.g., 2,3-dipalmitoyl-S-glyceryl cysteine-Pam2C), greater insight into the mechanisms by which PAMs can exert immunostimulatory effects was gained. It was found that specific combinations of antigen and adjuvant can significantly alter vaccine immunogenicity both in vitro and in vivo. These results inform fundamental design rules that can be leveraged to fabricate optimal PAM-based vaccine formulations for future disease-specific applications. Graphical Abstract.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Epitopos/imunologia , Imunogenicidade da Vacina , Micelas , Peptídeos/administração & dosagem , Tensoativos/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem
4.
ACS Biomater Sci Eng ; 4(7): 2330-2339, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435099

RESUMO

Hydrophobically driven self-assembly is a well-understood principle that has been shown to facilitate micelle formation. Although quite useful, the library of structures accessible is limited to only a few simplistic geometric configurations that are suboptimal for complex applications. It is believed that other physical phenomena like hydrogen bonding and electrostatic interactions can be exploited to complement hydrophobic interactions allowing for the design of structurally complex, aggregated micelles. To test this theory, ABC triblock peptide amphiphiles comprising an application-specific peptide, a zwitterion-like peptide, and a hydrophobic lipid were synthesized for which block sequence modifications and order changes were used to investigate their impact on micelle formation. The results provide significant evidence that both hydrophobic and electrostatic driving forces influence the formation of complex micellar structures. Specifically, hydrophobic self-assembly facilitates individual micelle formation, whereas dipole electrostatic interactions govern the association of micelle units into complex architectures. Initial results indicate that there exists considerable flexibility in the choice of application-specific peptide allowing these structures to serve as a platform technology for a variety of fields.

5.
ACS Biomater Sci Eng ; 4(7): 2463-2472, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435110

RESUMO

Vaccines are one of the best health care advances ever developed, having led to the eradication of smallpox and near eradication of polio and diphtheria. While tremendously successful, traditional vaccines (i.e., whole-killed or live-attenuated) have been associated with some undesirable side effects, including everything from mild injection site inflammation to the autoimmune disease Guillain-Barré syndrome. This has led recent research to focus on developing subunit vaccines (i.e., protein, peptide, or DNA vaccines) since they are inherently safer because they deliver only the bioactive components necessary (i.e., antigens) to produce a protective immune response against the pathogen of interest. However, a major challenge in developing subunit vaccines is overcoming numerous biological barriers to effectively deliver the antigen to the secondary lymphoid organs where adaptive immune responses are orchestrated. Peptide amphiphile micelles are a class of biomaterials that have been shown to possess potent self-adjuvanting vaccine properties, but their optimization capacity and underlying immunostimulatory mechanism are not well understood. The present work investigated the influence of micelle size and charge on the materials' bioactivity, including lymph node accumulation, cell uptake ability, and immunogenicity. The results generated provide considerable insight into how micelles exert their biological effects, yielding a micellar toolbox that can be exploited to either enhance or diminish host immune responses. This exciting development makes peptide amphiphile micelles an attractive candidate for both immune activation and suppression applications.

6.
Curr Opin Biotechnol ; 34: 217-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25863196

RESUMO

As vaccines have transitioned from the use of whole pathogens to only the required antigenic epitopes, unwanted side effects have been decreased, but corresponding immune responses have been greatly diminished. To enhance immunogenicity, a variety of controlled release vehicles have been proposed as synthetic vaccines, but nanoparticles have emerged as particularly impressive systems due to many exciting publications. In specific, nanoparticles have been shown capable of not only desirable vaccine release, but can also be targeted to immune cells of interest, loaded with immunostimulatory substances termed adjuvants, or even induce desirable immune activating effects on their own. In the present review, recent advances in the utilization of inorganic, polymeric, and biomolecular nanoparticles as synthetic vaccines are discussed.


Assuntos
Nanopartículas/administração & dosagem , Adjuvantes Imunológicos , Animais , Formação de Anticorpos , Humanos , Lipossomos/administração & dosagem , Lipossomos/química , Micelas , Nanopartículas/química , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA