Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Environ Toxicol Chem ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771199

RESUMO

The presence and persistence of microplastics (MPs) in diverse aquatic environments are of global concern. Microplastics can impact marine organisms via direct physical interaction and the release of potentially harmful chemical additives incorporated into the plastic. These chemicals are physically bound to the plastic matrix and can leach out. The hazards associated with chemical additives to exposed organisms is not well characterized. We investigated the hazards of plastic additives leaching from plastic. We used the common plasticizer dibutyl phthalate (DBP) as a chemical additive proxy and the New Zealand green-lipped mussel (Perna canaliculus) as a model. We used early-adult P. canaliculus exposed to combinations of virgin and DBP-spiked polyvinyl chloride (PVC), MPs, and DBP alone for 7 days. Whole transcriptome sequencing (RNA-seq) was conducted to assess whether leaching of DBP from MPs poses a hazard. The differences between groups were evaluated using pairwise permutational multivariate analysis of variance (PERMANOVA), and all treatments were significantly different from controls. In addition, a significant difference was seen between DBP and PVC MP treatment. Transcriptome analysis revealed that mussels exposed to DBP alone had the most differentially expressed genes (914), followed by PVC MP + DBP (448), and PVC MP (250). Gene ontology functional analysis revealed that the most enriched pathway types were in cellular metabolism, immune response, and endocrine disruption. Microplastic treatments enriched numerous pathways related to cellular metabolism and immune response. The combined exposure of PVC MP + DBP appears to cause combined effects, suggesting that DBP is bioavailable to the exposed mussels in the PVC MP + DBP treatment. Our results support the hypothesis that chemical additives are potentially an important driver of MP toxicity. Environ Toxicol Chem 2024;00:1-11. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
Toxicon ; 243: 107721, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38636612

RESUMO

Tetrodotoxin (TTX) is a potent neurotoxin causing human intoxications from contaminated seafood worldwide and is of emerging concern in Europe. Shellfish have been shown to contain varying TTX concentrations globally, with concentrations typically higher in Pacific oysters Crassostrea gigas in Europe. Despite many decades of research, the source of TTX remains unknown, with bacterial or algal origins having been suggested. The aim of this study was to identify potential source organisms causing TTX contamination in Pacific oysters in French coastal waters, using three different techniques. Oysters were deployed in cages from April to September 2021 in an estuary where TTX was previously detected. Microscopic analyses of water samples were used to investigate potential microalgal blooms present prior or during the peak in TTX. Differences in the bacterial communities from oyster digestive glands (DG) and remaining flesh were explored using metabarcoding, and lastly, droplet digital PCR assays were developed to investigate the presence of Cephalothrix sp., one European TTX-bearing species in the DG of toxic C. gigas. Oysters analysed by liquid chromatography-tandem mass spectrometry contained quantifiable levels of TTX over a three-week period (24 June-15 July 2021), with concentrations decreasing in the DG from 424 µg/kg for the first detection to 101 µg/kg (equivalent to 74 to 17 µg/kg of total flesh), and trace levels being detected until August 13, 2021. These concentrations are the first report of the European TTX guidance levels being exceeded in French shellfish. Microscopy revealed that some microalgae bloomed during the TTX peak, (e.g., Chaetoceros spp., reaching 40,000 cells/L). Prokaryotic metabarcoding showed increases in abundance of Rubritaleaceae (genus Persicirhabdus) and Neolyngbya, before and during the TTX peak. Both phyla have previously been described as possible TTX-producers and should be investigated further. Droplet digital PCR analyses were negative for the targeted TTX-bearing genus Cephalothrix.


Assuntos
Reação em Cadeia da Polimerase , Tetrodotoxina , Tetrodotoxina/análise , Animais , França , Microscopia , Crassostrea , Código de Barras de DNA Taxonômico , Monitoramento Ambiental/métodos , Microalgas , Estações do Ano
3.
Mar Drugs ; 22(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38535460

RESUMO

The genus Gambierdiscus produces an array of bioactive hydrophilic and lipophilic secondary metabolites that range in mode of action and toxicity. In this study, the metabolite fingerprint was mapped for thirteen Gambierdiscus, five Coolia and two Fukuyoa species (34 isolates) by assessing the production of 56 characterised secondary metabolites. Gambierdiscus polynesiensis was the only species to produce Pacific-ciguatoxin-3B (P-CTX3B), P-CTX3C, iso-P-CTX3B/C, P-CTX4A, P-CTX4B and iso-P-CTX4A/B. G. australes produced maitotoxin-1 (MTX-1) and MTX-5, G. cheloniae produced MTX-6 and G. honu produced MTX-7. Ubiquitous production of 44-methylgambierone was observed amongst all the Gambierdiscus isolates, with nine species also producing gambierone. Additional gambierone analogues, including anhydrogambierone (tentatively described herein), were also detected in all Gambierdiscus species, two Coolia and two Fukuyoa species. Gambieroxide was detected in G. lewisii and G. pacificus and gambieric acid A was detected in ten Gambierdiscus species, with G. australes (CAWD381) being the only isolate to produce gambieric acids A-D. This study has demonstrated that the isolates tested to date produce the known CTXs or MTXs, but not both, and highlighted several species that produced 'unknown' compounds displaying characteristics of cyclic polyethers, which will be the focus of future compound discovery efforts.


Assuntos
Ciguatoxinas , Dinoflagellida , Éteres , Sorogrupo
4.
Sci Rep ; 14(1): 6442, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499675

RESUMO

Two gene regions commonly used to characterise the diversity of eukaryotic communities using metabarcoding are the 18S ribosomal DNA V4 and V9 gene regions. We assessed the effectiveness of these two regions for characterising diverisity of coastal eukaryotic microalgae communities (EMCs) from tropical and temperate sites. We binned amplicon sequence variants (ASVs) into the high level taxonomic groups: dinoflagellates, pennate diatoms, radial centric diatoms, polar centric diatoms, chlorophytes, haptophytes and 'other microalgae'. When V4 and V9 generated ASV abundances were compared, the V9 region generated a higher number of raw reads, captured more diversity from all high level taxonomic groups and was more closely aligned with the community composition determined using light microscopy. The V4 region did resolve more ASVs to a deeper taxonomic resolution within the dinoflagellates, but did not effectively resolve other major taxonomic divisions. When characterising these communities via metabarcoding, the use of multiple gene regions is recommended, but the V9 gene region can be used in isolation to provide high-level community biodiversity to reflect relative abundances within groups. This approach reduces the cost of sequencing multiple gene regions whilst still providing important baseline ecosystem function information.


Assuntos
Diatomáceas , Dinoflagellida , Microalgas , Ecossistema , Microalgas/genética , Biodiversidade , Diatomáceas/genética , DNA Ribossômico/genética , Dinoflagellida/genética , RNA Ribossômico 18S/genética , Filogenia
5.
Cryobiology ; 114: 104855, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301952

RESUMO

The Symbiodinium genus is ancestral among other Symbiodiniaceae lineages with species that are both symbiotic and free living. Changes in marine ecosystems threaten their existence and crucial ecological roles. Cryopreservation offers an avenue for their long-term storage for future habitat restoration after coral bleaching. In our previous study we demonstrated that high salinity treatments of Symbiodiniaceae isolates led to changes in their fatty acid (FA) profiles and higher cell viabilities after cryopreservation. In this study, we investigated the role of increased salinity on FA production and the genes involved in FA biosynthesis and degradation pathways during the cryopreservation of Symbiodinium pilosum. Overall, there was a twofold increase in mass of FAs produced by S. pilosum after being cultured in medium with increased salinity (54 parts per thousand; ppt). Dimethyl sulfoxide (Me2SO) led to a ninefold increase of FAs in standard salinity (SS) treatment, compared to a fivefold increase in increased salinity (IS) treatments. The mass of the FA classes returned to baseline during recovery. Transcriptomic analyses showed an acyl carrier protein gene was significantly upregulated after Me2SO treatment in the SS cultures. Cytochrome P450 reductase genes were significantly down regulated after Me2SO addition in SS treatment preventing FA degradation. These changes in the expression of FA biosynthesis and degradation genes contributed to more FAs in SS treated isolates. Understanding how increased salinity changes FA production and the roles of specific genes in regulating FA pathways will help improve current freezing protocols for Symbiodiniaceae and other marine microalgae.


Assuntos
Antozoários , Dinoflagellida , Animais , Dimetil Sulfóxido/farmacologia , Criopreservação/métodos , Ácidos Graxos , Salinidade , Ecossistema , Antozoários/fisiologia , Dinoflagellida/genética
6.
Harmful Algae ; 130: 102524, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38061817

RESUMO

Benthic dinoflagellates that can cause illness, such as ciguatera poisoning (CP), are prevalent around the Pacific but are poorly described in many locations. This study represents the first ecological assessment of benthic harmful algae species in the Kingdom of Tonga, a country where CP occurs regularly. Surveys were conducted in June 2016 in the Tongatapu island group, and in June 2017 across three island groups: Ha'apai, Vava'u, and Tongatapu. Shallow subtidal coastal habitats were investigated by measuring water quality parameters and conducting quadrat surveys. Microalgae samples were collected using either macrophyte collection or the artificial substrate method. Benthic dinoflagellates (Gambierdiscus and/or Fukuyoa, Ostreopsis, and Prorocentrum) were counted using light microscopy, followed by molecular analyses (real-time PCR in 2016 and high throughput sequencing (metabarcoding) in 2017) to identify Gambierdiscus and Fukuyoa to species level. Six species were detected from the Tongatapu island group in 2016 (G. australes, G. carpenteri, G. honu, G. pacificus, F. paulensis, and F. ruetzleri) using real-time PCR. Using the metabarcoding approach in 2017, a total of eight species (G. australes, G. carpenteri, G. honu, G. pacificus, G. cheloniae, G. lewisii, G. polynesiensis, and F. yasumotoi) were detected. Species were detected in mixed assemblages of up to six species, with G. pacificus and G. carpenteri being the most frequently observed. Ha'apai had the highest diversity with eight species detected, which identifies this area as a Gambierdiscus diversity 'hotspot'. Vava'u and Tongatapu had three and six species found respectively. Gambierdiscus polynesiensis, a described ciguatoxin producer and proposed causative agent of CP was found only in Ha'apai and Vava'u in 2017, but not in Tongatapu in either year. Ostreopsis spp. and Prorocentrum spp. were also frequently observed, with Prorocentrum most abundant at the majority of sites. In 2016, the highest number of Gambierdiscus and/or Fukuyoa cells were observed on seagrass (Halodule uninervis) from Sopu, Tongatapu. In 2017, the highest numbers of Gambierdiscus and/or Fukuyoa from artificial substrate samples were recorded in the Halimeda dominant habitat at Neiafu Tahi, Vava'u, a low energy site. This raised the question of the effect of wave motion or currents on abundance measurements from artificial substrates. Differences in detection were noticed between macrophytes and artificial substrates, with higher numbers of species found on artificial substrates. This study provides a baseline of benthic dinoflagellate distributions and diversity for Tonga that may be used for future studies and the development of monitoring programmes.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Dinoflagellida/química , Tonga
7.
Harmful Algae ; 128: 102494, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714580

RESUMO

Temperatures and temperature anomalies have been increasing in the sub-tropical regions of Aotearoa New Zealand and these changes may impact on harmful algal bloom (HAB) events. Benthic and epiphytic dinoflagellates, particularly the toxin producers, are the focus of this study as it is predicted that under future climate conditions they may produce more toxins or marine animals may become more susceptible to them. The results of past expeditions to Rangitahua Kermadec Islands and sampling trips to Northland, Aotearoa New Zealand, are summarised and the results of the most recent trips to both regions are presented. The macroalgal habitats of the dinoflagellates are also characterised. Dinoflagellate species not previously identified in Rangitahua include Coolia canariensis, C. palmyrensis, and C. tropicalis, all identified by DNA sequencing of the large subunit ribosomal RNA region. Gambierdiscus polynesiensis was again isolated and produced 44-methylgambierone and gambierone, and one isolate produced ciguatoxins, the cause of Ciguatera Poisoning. An Ostreopsis tairoto isolate, as analysed by the oxidative cleavage method, produced a palytoxin (PLTX)-like amine oxidation fragment, but when analysed for PLTX-like analogues using a new intact method none were detected indicating an 'unknown' PLTX-like compound is produced by this isolate. Isolates of O. cf. siamensis (Ostreopsis sp. 9), collected in Northland, were also analysed using the oxidative cleavage method, with the common PLTX-like amine fragment and the amide fragment corresponding to bishomoPLTX detected in all isolates. Again, the intact method indicated no detections in the isolates, again suggesting an unknown compound was being produced by these isolates. Prorocentrum hoffmannianum isolates produced okadaic acid (OA) and isoDTX-1 and P. lima isolates produced OA, DTX-1, and isoDTX-1. It is expected that new species of potentially harmful, benthic dinoflagellates will continue to be recorded in Aotearoa New Zealand and the results from Rangitahua provide a guide to the HAB species to expect in sub-tropical Northland as the oceans continue to warm.


Assuntos
Dinoflagellida , Animais , Ilhas , Nova Zelândia , Proliferação Nociva de Algas , Aminas
8.
Harmful Algae ; 127: 102465, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544681

RESUMO

The green-lipped mussel (GLM) Perna canaliculus is an economically, ecologically, and culturally important species in Aotearoa New Zealand. Since 2011, harmful algal blooms (HABs) of Alexandrium spp. have occurred annually in the Marlborough Sounds, the largest GLM aquaculture region in New Zealand. Across a similar timeframe, there has been a severe reduction in wild spat (juvenile mussel) catch. This research investigated the effects of Alexandrium pacificum (which produces paralytic shellfish toxins; PSTs) and A. minutum (a non-producer of PSTs) on the development of four GLM larval life stages (gametes, embryos, D-stage and settlement). Early life stages of GLM were exposed to environmentally relevant concentrations of Alexandrium spp. as whole cell, lysate and filtrate treatments. A 48-h exposure of embryos to whole A. pacificum cells at 500 cells mL-1 caused lysis of embryos, severe abnormalities, and reduced development through to veliger (D-stage) larvae by 85%. GLM growth was impaired at cell concentrations as low as 250 cells mL-1 during a 4-day exposure of D-stage larvae to both Alexandrium spp. Exposure of GLM to both whole and lysed treatments of Alexandrium spp. at 500 cells mL-1 resulted in halved larval growth rates (2.00 µm day-1 vs 4.48 µm day-1 in the control) and growth remained impeded during a 4-day recovery period. Both A. pacificum and A. minutum were found to negatively impact D-larvae. Both whole-cell and lysed-cell treatments of A. pacificum had similar negative effects, suggesting that Alexandrium spp. toxicity to D-larvae is independent of PSTs. Additionally, cell membrane-free treatments of A. pacificum had no negative effects on embryo development, indicating that cell surface-associated bioactive compounds may be responsible for the observed negative effects during this early life stage. Conversely, non-PST-producing A. minutum was toxic to D-stage larvae but not to embryos; larval growth was reduced following a brief 1 h exposure of sperm to cell membrane-free treatments of A. pacificum. No effects were recorded in GLM larvae exposed during settlement, highlighting the potential for differences in susceptibility of early life stages to Alexandrium spp. exposure and the influence of exposure durations. In the wild, blooms of Alexandrium spp. can persist for several months, reaching cell densities higher than those investigated in the present study, and as such may be detrimental to the vulnerable early life stages of GLM.


Assuntos
Dinoflagellida , Perna (Organismo) , Animais , Larva , Sementes , Proliferação Nociva de Algas
9.
PeerJ ; 11: e14885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874975

RESUMO

Many strains of Symbiodiniaceae have been isolated and their genetics, taxonomy, and metabolite production studied. Maintaining these cultures requires careful and regular sub-culturing that is costly with a high risk of species contamination or loss. Cryopreservation is a viable alternative for their long-term storage; however, there is uncertainty as to whether cryopreservation impacts the photosynthetic performance of Symbiodiniaceae. We investigated the growth rates and photosynthetic efficiency of two species, Breviolum psygmophilum and Effrenium voratum before and after cryopreservation. Rapid light curves (RLCs) produced using Pulse Amplitude Modulated (PAM) fluorometry were used to generate detailed information on the characteristics of photosystem II (PSII). The maximum electron transport rate (ETRmax) and the quantum yield (Fv/Fm) of the control (non-cryopreserved) and cryopreserved culture isolates were assessed across the growth cycle. The non-cryopreserved isolate of B. psygmophilum had a higher quantum yield than the cryopreserved isolate from day 12 to day 24, whereas there were no differences from day 28 to the late stationary phase. There were no significant differences in ETRmax. No significant differences were observed in quantum yield or ETRmax between the control and cryopreserved E. voratum isolates. The ability of cryopreserved strains to recover and regain their photosynthetic efficiency after freezing demonstrates the utility of this method for the long-term storage of these and other Symbiodiniaceae species.


Assuntos
Criopreservação , Dinoflagellida , Fotossíntese , Transporte de Elétrons , Ciclo Celular
10.
Mar Pollut Bull ; 190: 114829, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958116

RESUMO

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is currently the gold-standard technique for detecting and quantifying messenger RNA. However, without proper validation, the method may produce artefactual and non-reproducible cycle threshold values generating poor-quality data. The newer droplet digital PCR (ddPCR) method allows for the absolute quantification of targeted nucleic acids providing more sensitive and accurate measurements without requiring external standards. This study compared these two PCR-based methods to measure the expression of well-documented genes used in ecotoxicology studies. We exposed Mediterranean mussels (Mytilus galloprovincialis) to copper and analyzed gene expression in gills and digestive glands using RT-qPCR and ddPCR assays. A step-by-step methodology to optimize and compare the two technologies is described. After ten-fold serial complementary DNA dilution, both RT-qPCR and ddPCR exhibited comparable linearity and efficiency and produced statistically similar results. We conclude that ddPCR is a suitable method to assess gene expression in an ecotoxicological context. However, RT-qPCR has a shorter processing time and remains more cost-effective.


Assuntos
Ecotoxicologia , Transcrição Reversa , Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Biomarcadores
11.
Environ Sci Pollut Res Int ; 30(3): 6805-6817, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36002791

RESUMO

Ascidians or sea squirts are among the marine taxa with the most introduced species worldwide. These animals have a suite of biological characteristics that contribute to their successful establishment, including long reproductive seasons, rapid growth rates, and resistance to pollution. Here, we sequenced a fragment of the 16S ribosomal RNA gene to characterize symbiont diversity and host-specificity in the solitary species Syela clava and Ascidiella aspersa, and the colonial species Didemnum vexillum. Samples were collected from introduced populations in several marinas and mussel facilities around Ireland, and a marina in New Zealand. Two additional colonial species Botrylloides violaceus and Didemnum sp. were collected in Ireland, and ambient seawater was sampled from both countries for comparison. Data revealed a strong effect of host species and location on prokaryote symbiont composition, consistent with recent ascidian microbiome literature. However, a location effect did not manifest in alpha diversity metrics (e.g., the same ascidian species at different locations exhibited similar diversity) but was evident in beta diversity metrics (greater intra-specific differences across locations than within locations). Location effects were stronger than species effects only for the solitary species (i.e., A. aspersa from New Zealand was more similar to S. clava from New Zealand than to A. aspersa from Ireland). D. vexillum and A. aspersa hosted a high abundance of prokaryotic symbionts that were previously found in other ascidian species, while S. clava symbiotic community was more closely related to bacteria common in the marine environment. Further studies should aim to unravel host-microbe coevolutionary patterns and the microbial role in facilitating host establishment in different habitats.


Assuntos
Microbiota , Urocordados , Animais , Urocordados/microbiologia , Irlanda , Nova Zelândia , Bactérias/genética , Espécies Introduzidas , RNA Ribossômico 16S/genética , Filogenia
12.
Front Physiol ; 14: 1265879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38425477

RESUMO

New Zealand's green-lipped mussel (Perna canaliculus) is an ecologically and economically important species. Marine heatwaves are increasing in frequency around NZ's coastline, and these events are correlated with increased stress and mortality of some aquaculture species. This study aimed to identify general biomarkers of heat stress in P. canaliculus and to assess whether responses differed between genetically distinct selectively bred mussels. We exposed three families of selectively bred mussels (families A, B and C) to three seawater temperature regimes in the laboratory: 1) a "control" treatment (ambient 12°C), 2) a 26°C heat challenge with a subsequent recovery period, and 3) a sustained 26°C heat challenge with no recovery. We investigated whether the survival, immune response (hemocyte concentration and viability, oxidative stress and total antioxidant capacity), hemocyte gene expression and gill microbiome differed between the families during the temperature challenges. In the sustained heat-stress treatment, family A had the highest survival rate (42% compared with 25% and 5% for families C and B, respectively). Gene expression levels significantly shifted during thermal stress and differed between families, with family A more dissimilar than families B and C. Family C had substantially more genes impacted by temperature treatment and timepoint than the other families, while family B had very little genes/pathways that responded to thermal stress. Genes related to heat shock proteins and immune responses (e.g., AIF1, CTSC, TOLL8, CASP9, FNTA, AHCY, CRYAB, PPIF) were upregulated in all families during heat stress. Microbiome species-richness differed between families before and during heat-stress, with family A having a distinctly different microbiome flora than the other families. Microbial diversity changed similarly in all families exposed to prolonged heat-stress, with species of Vibrio and Campylobacter increasing in these mussels. Our study highlights the use of non-lethal sampling of hemocytes as a diagnostic tool to explore the immune response and gene expression of selectively bred mussels, to predict their response to ocean warming. This approach can identify potential thermotolerant candidates for further selective breeding, which may increase the resilience of the mussel aquaculture industry in a warming ocean.

13.
Harmful Algae ; 118: 102308, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195424

RESUMO

An increase in cases of ciguatera poisoning (CP) and expansion of the causative species in the South Pacific region highlight the need for baseline data on toxic microalgal species to help identify new areas of risk and manage known hot spots. Gambierdiscus honu is a toxin producing and potential CP causing dinoflagellate species, first described in 2017. Currently no high-resolution geographical distribution, intraspecific genetic variation or toxin production diversity data is available for G. honu. This research aimed to further characterize G. honu by investigating its distribution using species-specific real-time polymerase chain reaction assays at 25 sites in an area spanning ∼8000 km of the Coral Sea/Pacific Ocean, and assessing intraspecific genetic variation, toxicity and toxin production of isolated strains. Assessment of genetic variation of the partial rRNA operon of isolates demonstrated no significant intraspecific population structure, in addition to a lack of adherence to isolation by distance (IBD) model of evolution. The detected distribution of G. honu in the Pacific region was within the expected tropical to temperate latitudinal ranges of 10° to -30° and extended from Australia to French Polynesia. In the lipophilic fractions, the neuroblastoma cell-based assay (CBA-N2a) showed no ciguatoxin (CTX)-like activity for nine of the 10 isolates, and an atypical pattern for CAWD233 isolate which showed cytotoxic activity in OV- and OV+ conditions. In the same way, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis confirmed no Pacific-CTXs (CTX-3B, CTX-3C, CTX-4A, CTX-4B) were produced by the ten strains. The CBA-N2a assessment of the hydrophilic fractions showed moderate to high cytotoxicity in both OV- and OV+ condition for all the strains showing a cytotoxic profile similar to that of gambierone. Indeed, this study is the first to show the cytotoxic activity of gambierone on mouse neuroblastoma cells while no cytotoxicity was observed when 44-MG was analysed at the same concentrations using the CBA-N2a. Analysis of the hydrophilic via LC-MS/MS confirmed production of gambierone in all isolates, ranging from 2.1 to 38.1 pg/cell, with 44-methylgambierone (44-MG) also produced by eight of the isolates, ranging from 0.3 to 42.9 pg/cell. No maitotoxin-1 was detected in any of the isolates. Classification of the G. honu strains according to the quantities of gambierone produced aligned with the classification of their cytotoxicity using the CBA-N2a. Finally, no maitotoxin-1 (MTX) was detected in any of the isolates. This study shows G. honu is widely distributed within the Pacific region with no significant intraspecific population structure present. This aligns with the view of microalgal populations as global metapopulations, however more in-depth assessment with other genetic markers could detect further structure. Toxicity diversity across 10 isolates assessed did not display any geographical patterns.


Assuntos
Ciguatera , Dinoflagellida , Neuroblastoma , Animais , Cromatografia Líquida/métodos , Ciguatera/epidemiologia , Dinoflagellida/química , Éteres , Marcadores Genéticos , Toxinas Marinhas/toxicidade , Camundongos , Camundongos Endogâmicos CBA , Oxocinas , Espectrometria de Massas em Tandem
14.
Sci Rep ; 12(1): 12408, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859115

RESUMO

Symbiodiniaceae are a diverse group of dinoflagellates, the majority of which are free-living and/or associated with a variety of protists and other invertebrate hosts. Maintenance of isolated cultures is labour-intensive and expensive, and cryopreservation provides an excellent avenue for their long-term storage. We aimed to cryopreserve 15 cultured isolates from six Symbiodiniaceae genera using dimethyl sulfoxide (DMSO) as the cryoprotectant agent (CPA). Under 15% DMSO, 10 isolates were successfully cryopreserved using either rapid freezing or controlled-rate freezing. Cultures that failed or had low survival, were subjected to (1) a reduction of CPA to 10%, or (2) increased salinity treatment before freezing. At 10% DMSO, three further isolates were successfully cryopreserved. At 15% DMSO there were high cell viabilities in Symbiodinium pilosum treated with 44 parts per thousand (ppt) and 54 ppt culture medium. An isolate of Fugacium sp. successfully cryopreserved after salinity treatments of 54 ppt and 64 ppt. Fatty acid (FA) analyses of S. pilosum after 54 ppt salinity treatment showed increased saturated FA levels, whereas Fugacium sp. had low poly-unsaturated FAs compared to normal salinity (34 ppt). Understanding the effects of salinity and roles of FAs in cryopreservation will help in developing protocols for these ecologically important taxa.


Assuntos
Dimetil Sulfóxido , Dinoflagellida , Criopreservação/métodos , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Ácidos Graxos , Salinidade
15.
Environ Sci Pollut Res Int ; 29(59): 88699-88709, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35836051

RESUMO

Karlodinium veneficum is a toxic benthic globally distributed dinoflagellate which has direct impacts on human health and the environment. Early and accurate detection of this harmful algal bloom-forming species could be useful for potential risks monitoring and management. In the present work, a real-time PCR targeting the internal transcribed spacer ribosomal DNA region for the specific detection and absolute quantification of K. veneficum was designed. Then, the assay conditions were adjusted and validated. The developed qPCR was highly specific for the target species and displayed no cross-reactivity with closely related dinoflagellates and/or other microalgal species commonly distributed along the Tunisian coast. Its lowest detection limit was 5 rDNA copies per reaction, which is often considered satisfying. qPCR assay enumeration accuracy was evaluated using artificially inoculated environmental samples. The comparison of the cell abundance estimates obtained by qPCR assay with the theoretical estimates showed no statistically significant difference across a range of concentrations. We suggest that the qPCR approach developed in the present study may be a valuable tool to investigate the distribution and seasonal dynamics of K. veneficum in marine environments.


Assuntos
Dinoflagellida , Microalgas , Humanos , Proliferação Nociva de Algas , Reação em Cadeia da Polimerase em Tempo Real , DNA Ribossômico
16.
Toxins (Basel) ; 14(5)2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35622588

RESUMO

Harmful algal blooms (HABs) have wide-ranging environmental impacts, including on aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of the aquaculture industry could be adversely affected by the occurrence of HABs. This review examines HAB species which are known to bloom both globally and in NZ and their effects on commercially important shellfish and fish species. Blooms of Karenia spp. have frequently been associated with mortalities of both fish and shellfish in NZ and the sub-lethal effects of other genera, notably Alexandrium spp., on shellfish (which includes paralysis, a lack of byssus production, and reduced growth) are also of concern. Climate change and anthropogenic impacts may alter HAB population structure and dynamics, as well as the physiological responses of fish and shellfish, potentially further compromising aquatic species. Those HAB species which have been detected in NZ and have the potential to bloom and harm marine life in the future are also discussed. The use of environmental DNA (eDNA) and relevant bioassays are practical tools which enable early detection of novel, problem HAB species and rapid toxin/HAB screening, and new data from HAB monitoring of aquaculture production sites using eDNA are presented. As aquaculture grows to supply a sizable proportion of the world's protein, the effects of HABs in reducing productivity is of increasing significance. Research into the multiple stressor effects of climate change and HABs on cultured species and using local, recent, HAB strains is needed to accurately assess effects and inform stock management strategies.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Animais , Peixes , Nova Zelândia , Frutos do Mar
17.
Environ Sci Pollut Res Int ; 29(42): 63953-63963, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35469376

RESUMO

Gymnodinium catenatum is a dinoflagellate known to cause paralytic shellfish poisoning (PSP), commonly associated with human muscular paralysis, neurological symptoms, and, in extreme cases, death. In the present work, we developed a real-time PCR-based assay for the rapid detection of the toxic microalgal species, G. catenatum, in environmental bivalve mollusc samples as well as seawater samples. G. catenatum-specific primers and probe were designed on the ITS1-5.8S-ITS2 rDNA region. Hydrolysis probe qPCR assay was optimized. ITS1-5.8S-ITS2 rDNA region copy numbers per G. catenatum cell genome were estimated to be 122.73 ± 5.54 copies/cell, allowing cell quantification. The application of the optimized qPCR assay for G. catenatum detection and quantification in field samples has been conducted, revealing high sensitivity (detection of around 1.3105 cells/L of seawater samples. Thus, the designed hydrolysis probe qPCR assay could be considered an efficient tool for phytoplankton monitoring whilst ensuring accuracy and sensitivity and providing cost and time savings.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , DNA Ribossômico/genética , Reação em Cadeia da Polimerase em Tempo Real , Tunísia
18.
J Phycol ; 58(3): 465-486, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35234279

RESUMO

The taxonomy of the extant dinoflagellate genus Gonyaulax is challenging since its thecate morphology is rather conservative. In contrast, cysts of Gonyaulax are varied in morphology and have been related with the fossil-based genera Spiniferites and Impagidinium. To better understand the systematics of Gonyaulax species, we performed germination experiments on cysts that can be identified as S. ristingensis, an unidentified Spiniferites with petaloid processes here described as Spiniferites pseudodelicatus sp. nov. and Impagidinium variaseptum from Chinese and Portuguese waters. Despite marked differences in cyst morphology, motile cells of S. pseudodelicatus and I. variaseptum are indistinguishable from Gonyaulax baltica. Motile cells hatched from S. ristingensis are morphologically similar to G. baltica as well but differ in the presence of one pronounced antapical spine. Three new species, Gonyaulax amoyensis (cyst equivalent S. pseudodelicatus), Gonyaulax bohaiensis (cyst equivalent I. variaseptum), and Gonyaulax portimonensis (cyst equivalent S. ristingensis), were erected. In addition, a new ribotype (B) of G. baltica was reported from South Korea and a bloom of G. baltica ribotype B is reported from New Zealand. Molecular phylogeny based on LSU and SSU rRNA gene sequences revealed that Gonyaulax species with minute or short antapical spines formed a well-resolved clade, whereas species with two pronounced antapical spines or lack of antapical spines formed the sister clade. Six strains of four above species were examined for yessotoxin production by liquid chromatography coupled with tandem mass spectrometry, and very low concentrations of yessotoxin were detected for one G. bohaiensis strain.


Assuntos
Dinoflagellida , Cromatografia Líquida , Dinoflagellida/genética , Filogenia , República da Coreia , Espectrometria de Massas em Tandem
19.
Sci Rep ; 12(1): 646, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027556

RESUMO

Dinoflagellates are among the most diverse group of microalgae. Many dinoflagellate species have been isolated and cultured, and these are used for scientific, industrial, pharmaceutical, and agricultural applications. Maintaining cultures is time-consuming, expensive, and there is a risk of contamination or genetic drift. Cryopreservation offers an efficient means for their long-term preservation. Cryopreservation of larger dinoflagellate species is challenging and to date there has been only limited success. In this study, we explored the effect of cryoprotectant agents (CPAs) and freezing methods on three species: Vulcanodinium rugosum, Alexandrium pacificum and Breviolum sp. A total of 12 CPAs were assessed at concentrations between 5 and 15%, as well as in combination with dimethyl sulfoxide (DMSO) and other non-penetrating CPAs. Two freezing techniques were employed: rapid freezing and controlled-rate freezing. Breviolum sp. was successfully cryopreserved using 15% DMSO. Despite exploring different CPAs and optimizing the freezing techniques, we were unable to successfully cryopreserve V. rugosum and A. pacificum. For Breviolum sp. there was higher cell viability (45.4 ± 2.2%) when using the controlled-rate freezing compared to the rapid freezing technique (10.0 ± 2.8%). This optimized cryopreservation protocol will be of benefit for the cryopreservation of other species from the family Symbiodiniaceae.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Dinoflagellida/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Dinoflagellida/fisiologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos
20.
Aquat Toxicol ; 243: 106069, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34968986

RESUMO

Contaminants are often at low concentrations in ecosystems and their effects on exposed organisms can occur over long periods of time and across multiple generations. Alterations to subcellular mechanistic pathways in response to exposure to contaminants can provide insights into mechanisms of toxicity that methods measuring higher levels of biological may miss. Analysis of the whole transcriptome can identify novel mechanisms of action leading to impacts in exposed biota. The aim of this study was to characterise how exposures to copper, benzophenone and diclofenac across multiple generations altered molecular expression pathways in the marine copepod Gladioferens pectinatus. Results of the study demonstrated differential gene expression was observed in cultures exposure to diclofenac (569), copper (449) and benzophenone (59). Pathways linked to stress, growth, cellular and metabolic processes were altered by exposure to all three contaminants with genes associated with oxidative stress and xenobiotic regulation also impacted. Protein kinase functioning, cytochrome P450, transcription, skeletal muscle contraction/relaxation, mitochondrial phosphate translocator, protein synthesis and mitochondrial methylation were all differentially expressed with all three chemicals. The results of the study also suggested that using dimethyl sulfoxide as a dispersant influenced the transcriptome and future research may want to investigate it's use in molecular studies. Data generated in this study provides a first look at transcriptomic response of G. pectinatus exposed to contaminants across multiple generations, future research is needed to validate the identified biomarkers and link these results to apical responses such as population growth to demonstrate the predictive capacity of molecular tools.


Assuntos
Copépodes , Pectinatus , Poluentes Químicos da Água , Animais , Copépodes/genética , Ecossistema , Transcriptoma , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA