Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Endocr Soc ; 7(9): bvad097, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37564884

RESUMO

Aging is characterized by a gradual decline in physiological function. This process affects all organs including the adrenal cortex, which normally functions to produce essential steroid hormones including mineralocorticoids, glucocorticoids, and androgens. With increasing age, features such as reduced adrenal cortex size, altered zonation, and increased myeloid immune cell infiltration substantially alter the structure and function of the adrenal cortex. Many of these hallmark features of adrenal cortex aging occur both in males and females, yet are more enhanced in males. Hormonally, a substantial reduction in adrenal androgens is a key feature of aging, which is accompanied by modest changes in aldosterone and cortisol. These hormonal changes are associated with various pathological consequences including impaired immune responses, decreased bone health, and accelerated age-related diseases. One of the most notable changes with adrenal aging is the increased incidence of adrenal tumors, which is sex dimorphic with a higher prevalence in females. Increased adrenal tumorigenesis with age is likely driven by both an increase in genetic mutations as well as remodeling of the tissue microenvironment. Novel antiaging strategies offer a promising avenue to mitigate adrenal aging and alleviate age-associated pathologies, including adrenal tumors.

2.
Nat Aging ; 3(7): 846-865, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37231196

RESUMO

Aging markedly increases cancer risk, yet our mechanistic understanding of how aging influences cancer initiation is limited. Here we demonstrate that the loss of ZNRF3, an inhibitor of Wnt signaling that is frequently mutated in adrenocortical carcinoma, leads to the induction of cellular senescence that remodels the tissue microenvironment and ultimately permits metastatic adrenal cancer in old animals. The effects are sexually dimorphic, with males exhibiting earlier senescence activation and a greater innate immune response, driven in part by androgens, resulting in high myeloid cell accumulation and lower incidence of malignancy. Conversely, females present a dampened immune response and increased susceptibility to metastatic cancer. Senescence-recruited myeloid cells become depleted as tumors progress, which is recapitulated in patients in whom a low myeloid signature is associated with worse outcomes. Our study uncovers a role for myeloid cells in restraining adrenal cancer with substantial prognostic value and provides a model for interrogating pleiotropic effects of cellular senescence in cancer.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Masculino , Animais , Feminino , Carcinoma Adrenocortical/genética , Envelhecimento , Senescência Celular , Transdução de Sinais , Neoplasias do Córtex Suprarrenal/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA