Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
J Environ Radioact ; 199-200: 45-57, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30685638

RESUMO

Stand-off, in-situ, laser induced breakdown spectroscopy (LIBS) offers a rapid, safe, and cost-effective method for discrimination of radioactive waste materials arising during the operation of nuclear plants and from decommissioning activities. Characterisation of waste materials is a critical activity in understanding the nature of the waste, ensuring hazardous material is managed safely and that waste can be segregated for reuse, recycle or sentenced for appropriate disposal. Characterisation of materials, often in hostile environments, requires the ability to remotely differentiate between materials in terms of their chemical composition and radioactivity. This proposition was tested using a case study on nuclear grade graphite. Graphite has been used extensively as a moderator material in many nuclear reactors. Internationally, over 250,000 tons of various nuclear-grade graphite, and graphite-bearing, materials exist. These are a major issue for nuclear decommissioning and radioactive waste management, due to the long half-lives of the associated 14C and 36Cl isotopes. LIBS offers a method for discrimination of nuclear grade graphites and other carbon and non-carbon-bearing wastes. This paper describes the development of a workflow method, including LIBS measurement analysis, for the discrimination of pre-irradiated nuclear 'Pile Grade A' (PGA) graphite moderator rod and domestic lumpwood charcoal, which act as surrogates for nuclear grade graphite and other carbon-bearing wastes. A new analysis workflow comprising the examination of spectral characteristics, multivariate analysis and molecular isotopic spectroscopy is proposed to enable rapid segregation of graphite from a heterogeneous waste stream. Enhanced characterisation techniques have the potential to significantly reduce the cost of decommissioning large parts of legacy nuclear generation plants.


Assuntos
Monitoramento de Radiação/métodos , Resíduos Radioativos/análise , Gerenciamento de Resíduos/métodos , Grafite/química , Reatores Nucleares , Reciclagem , Fluxo de Trabalho
3.
Front Robot AI ; 6: 149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501164

RESUMO

In the immediate aftermath following a large-scale release of radioactive material into the environment, it is necessary to determine the spatial distribution of radioactivity quickly. At present, this is conducted by utilizing manned aircraft equipped with large-volume radiation detection systems. Whilst these are capable of mapping large areas quickly, they suffer from a low spatial resolution due to the operating altitude of the aircraft. They are also expensive to deploy and their manned nature means that the operators are still at risk of exposure to potentially harmful ionizing radiation. Previous studies have identified the feasibility of utilizing unmanned aerial systems (UASs) in monitoring radiation in post-disaster environments. However, the majority of these systems suffer from a limited range or are too heavy to be easily integrated into regulatory restrictions that exist on the deployment of UASs worldwide. This study presents a new radiation mapping UAS based on a lightweight (8 kg) fixed-wing unmanned aircraft and tests its suitability to mapping post-disaster radiation in the Chornobyl Exclusion Zone (CEZ). The system is capable of continuous flight for more than 1 h and can resolve small scale changes in dose-rate in high resolution (sub-20 m). It is envisaged that with some minor development, these systems could be utilized to map large areas of hazardous land without exposing a single operator to a harmful dose of ionizing radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA