Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Mol Cell ; 83(19): 3533-3545.e5, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802026

RESUMO

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma , DNA/genética , Pinças Ópticas
3.
Phys Chem Chem Phys ; 23(47): 26640-26644, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494640

RESUMO

Using optical tweezers, we investigate target search and cleavage by CRISPR-Cas12a on force-stretched λ-DNA. Cas12a uses fast, one-dimensional hopping to locate its target. Binding and cleavage occur rapidly and specifically at low forces (≤5 pN), with a 1.8 nm rate-limiting conformational change. Mechanical distortion slows diffusion, increases off-target binding but hinders cleavage.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , DNA/química , Endodesoxirribonucleases/química , Sistemas CRISPR-Cas , Modelos Moleculares , Pinças Ópticas
4.
Elife ; 102021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34569933

RESUMO

Regulated thin filaments (RTFs) tightly control striated muscle contraction through calcium binding to troponin, which enables tropomyosin to expose myosin-binding sites on actin. Myosin binding holds tropomyosin in an open position, exposing more myosin-binding sites on actin, leading to cooperative activation. At lower calcium levels, troponin and tropomyosin turn off the thin filament; however, this is antagonised by the high local concentration of myosin, questioning how the thin filament relaxes. To provide molecular details of deactivation, we used single-molecule imaging of green fluorescent protein (GFP)-tagged myosin-S1 (S1-GFP) to follow the activation of RTF tightropes. In sub-maximal activation conditions, RTFs are not fully active, enabling direct observation of deactivation in real time. We observed that myosin binding occurs in a stochastic step-wise fashion; however, an unexpectedly large probability of multiple contemporaneous detachments is observed. This suggests that deactivation of the thin filament is a coordinated active process.


Assuntos
Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Imagem Individual de Molécula/métodos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Músculo Estriado/metabolismo , Ligação Proteica , Processos Estocásticos , Troponina/metabolismo
5.
Clin Cancer Res ; 27(15): 4422-4434, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34083229

RESUMO

PURPOSE: Breast cancer diagnosed in young patients is often aggressive. Because primary breast tumors from young and older patients have similar mutational patterns, we hypothesized that the young host microenvironment promotes more aggressive metastatic disease. EXPERIMENTAL DESIGN: Triple-negative or luminal B breast cancer cell lines were injected into young and older mice side-by-side to quantify lung, liver, and brain metastases. Young and older mouse brains, metastatic and naïve, were analyzed by flow cytometry. Immune populations were depleted using antibodies or a colony-stimulating factor-1 receptor (CSF-1R) inhibitor, and brain metastasis assays were conducted. Effects on myeloid populations, astrogliosis, and the neuroinflammatory response were determined. RESULTS: Brain metastases were 2- to 4-fold higher in young as compared with older mouse hosts in four models of triple-negative or luminal B breast cancer; no age effect was observed on liver or lung metastases. Aged brains, naïve or metastatic, contained fewer resident CNS myeloid cells. Use of a CSF-1R inhibitor to deplete myeloid cells, including both microglia and infiltrating macrophages, preferentially reduced brain metastasis burden in young mice. Downstream effects of CSF-1R inhibition in young mice resembled that of an aged brain in terms of myeloid numbers, induction of astrogliosis, and Semaphorin 3A secretion within the neuroinflammatory response. CONCLUSIONS: Host microenvironmental factors contribute to the aggressiveness of triple-negative and luminal B breast cancer brain metastasis. CSF-1R inhibitors may hold promise for young brain metastasis patients.


Assuntos
Neoplasias Encefálicas/secundário , Células Mieloides , Neoplasias de Mama Triplo Negativas/patologia , Fatores Etários , Animais , Linhagem Celular Tumoral , Sistema Nervoso Central/citologia , Humanos , Camundongos , Receptor de Fator Estimulador de Colônias de Macrófagos/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-33470550

RESUMO

Nearly one in six people worldwide suffer from disorders of the central nervous system (CNS). There is an urgent need for effective strategies to improve the success rates in CNS drug discovery and development. The lack of effective technologies for delivering drugs and genes to the brain due to the blood-brain barrier (BBB), a structural barrier that effectively blocks most neurotherapeutic agents from reaching the brain, has posed a formidable hurdle for CNS drug development. Brain-homing and brain-penetrating molecular transport vectors, such as brain permeable peptides or BBB shuttle peptides, have shown promise in overcoming the BBB and ferrying the drug molecules to the brain. The BBB shuttle peptides are discovered by phage display technology or derived from natural neurotropic proteins or certain viruses and harness the receptor-mediated transcytosis molecular machinery for crossing the BBB. Brain permeable peptide-drug conjugates (PDCs), composed of BBB shuttle peptides, linkers, and drug molecules, have emerged as a promising CNS drug delivery system by taking advantage of the endogenous transcytosis mechanism and tricking the brain into allowing these bioactive molecules to pass the BBB. Here, we examine the latest development of brain-penetrating peptide shuttles and brain-permeable PDCs as molecular vectors to deliver small molecule drug payloads across the BBB to reach brain parenchyma. Emerging knowledge of the contribution of the peptides and their specific receptors expressed on the brain endothelial cells, choice of drug payloads, the design of PDCs, brain entry mechanisms, and delivery efficiency to the brain are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.


Assuntos
Barreira Hematoencefálica , Doenças do Sistema Nervoso Central , Sistemas de Liberação de Medicamentos , Peptídeos , Encéfalo , Doenças do Sistema Nervoso Central/tratamento farmacológico , Células Endoteliais , Humanos , Preparações Farmacêuticas/administração & dosagem
7.
J Alzheimers Dis ; 72(s1): S11-S35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31104030

RESUMO

The purpose of the 'First Regional Healthy Aging and Dementia Research Symposium' was to discuss the latest research in healthy aging and dementia research, public health trends related to neurodegenerative diseases of aging, and community-based programs and research studying health, nutrition, and cognition. This symposium was organized by the Garrison Institute on Aging (GIA) of the Texas Tech University Health Sciences Center (TTUHSC), and was held in Lubbock, Texas, October 24-25, 2018. The Symposium joined experts from educational and research institutions across the United States. The two-day Symposium included all GIA staff and researchers. Students, postdoctoral fellows, and faculty members involved in dementia research presented at the Symposium. Healthcare professionals, from geriatricians to social workers working with patients with neurodegenerative diseases, also presented. In addition, experts traveled from across the United States to participate. This event was comprised of multiple sessions, each with several oral presentations, followed by questions and answers, and discussion.


Assuntos
Pesquisa Biomédica/tendências , Congressos como Assunto/tendências , Demência/epidemiologia , Demência/psicologia , Envelhecimento Saudável/fisiologia , Envelhecimento Saudável/psicologia , Pesquisa Biomédica/métodos , Humanos , Texas/epidemiologia
8.
Pharm Res ; 33(12): 2904-2919, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27541873

RESUMO

PURPOSE: To evaluate vinorelbine drug exposure and activity in brain metastases of the human MDA-MB-231BR breast cancer model using integrated imaging and analysis. METHODS: Brain and systemic metastases were created by administration of cancer cells in female NuNu mice. After metastases developed, animals were administered vinorelbine at the maximal tolerated dose (12 mg/kg), and were evaluated thereafter for total and unbound drug pharmacokinetics, biomarker TUNEL staining, and barrier permeability to Texas red. RESULTS: Median brain metastasis drug exposure was 4-fold greater than normal brain, yet only ~8% of non-barrier systemic metastases, which suggests restricted brain exposure. Unbound vinorelbine tissue/plasma partition coefficient, Kp,uu, equaled ~1.0 in systemic metastases, but 0.03-0.22 in brain metastases, documenting restricted equilibration. In select sub-regions of highest drug-uptake brain metastases, Kp,uu approached 1.0, indicating complete focal barrier breakdown. Most vinorelbine-treated brain metastases exhibited little or no positive early apoptosis TUNEL staining in vivo. The in vivo unbound vinorelbine IC50 for TUNEL-positive staining (56 nM) was 4-fold higher than that measured in vitro (14 nM). Consistent with this finding, P-glycoprotein expression was observed to be substantially upregulated in brain metastasis cells in vivo. CONCLUSIONS: Vinorelbine exposure at maximum tolerated dose was less than one-tenth that in systemic metastases in >70% of brain metastases, and was associated with negligible biomarker effect. In small subregions of the highest uptake brain metastases, compromise of blood-tumor barrier appeared complete. The results suggest that restricted delivery accounts for 80% of the compromise in drug efficacy for vinorelbine against this model.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Vimblastina/análogos & derivados , Animais , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Preparações de Ação Retardada , Feminino , Humanos , Camundongos Nus , Permeabilidade , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/patologia , Vimblastina/administração & dosagem , Vimblastina/farmacocinética , Vimblastina/farmacologia , Vinorelbina
9.
J Phys Chem B ; 120(26): 5884-95, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-26996235

RESUMO

Histone deacetylases (HDACs) are responsible for the removal of acetyl groups from histones, resulting in gene silencing. Overexpression of HDACs is associated with cancer, and their inhibitors are of particular interest as chemotherapeutics. However, HDACs remain a target of mechanistic debate. HDAC class 8 is the most studied HDAC, and of particular importance due to its human oncological relevance. HDAC8 has traditionally been considered to be a Zn-dependent enzyme. However, recent experimental assays have challenged this assumption and shown that HDAC8 is catalytically active with a variety of different metals, and that it may be a Fe-dependent enzyme in vivo. We studied two opposing mechanisms utilizing a series of divalent metal ions in physiological abundance (Zn(2+), Fe(2+), Co(2+), Mn(2+), Ni(2+), and Mg(2+)). Extensive sampling of the entire protein with different bound metals was done with the mixed quantum-classical QM/DMD method. Density functional theory (DFT) on an unusually large cluster model was used to describe the active site and reaction mechanism. We have found that the reaction profile of HDAC8 is similar among all metals tested, and follows one of the previously published mechanisms, but the rate-determining step is different from the one previously claimed. We further provide a scheme for estimating the metal binding affinities to the protein. We use the quantum theory of atoms in molecules (QTAIM) to understand the different binding affinities for each metal in HDAC8 as well as the ability of each metal to bind and properly orient the substrate for deacetylation. The combination of this data with the catalytic rate constants is required to reproduce the experimentally observed trend in metal-depending performance. We predict Co(2+) and Zn(2+) to be the most active metals in HDAC8, followed by Fe(2+), and Mn(2+) and Mg(2+) to be the least active.


Assuntos
Cobalto/química , Histona Desacetilases/química , Ferro/química , Magnésio/química , Manganês/química , Proteínas Repressoras/química , Zinco/química , Biocatálise , Domínio Catalítico , Cátions Bivalentes , Cristalografia por Raios X , Humanos , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Teoria Quântica , Eletricidade Estática , Termodinâmica
10.
Neuro Oncol ; 17 Suppl 6: vi1-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26403167

RESUMO

Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Descoberta de Drogas , Glioma/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Intervalo Livre de Doença , Determinação de Ponto Final , Humanos , Resultado do Tratamento
11.
Neuro Oncol ; 17(5): 639-51, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25846288

RESUMO

While the use of targeted therapies, particularly radiosurgery, has broadened therapeutic options for CNS metastases, patients respond minimally and prognosis remains poor. The inability of many systemic chemotherapeutic agents to penetrate the blood-brain barrier (BBB) has limited their use and allowed brain metastases to become a burgeoning clinical challenge. Adequate preclinical models that appropriately mimic the metastatic process, the BBB, and blood-tumor barriers (BTB) are needed to better evaluate therapies that have the ability to enhance delivery through or penetrate into these barriers and to understand the mechanisms of resistance to therapy. The heterogeneity among and within different solid tumors and subtypes of solid tumors further adds to the difficulties in determining the most appropriate treatment approaches and methods of laboratory and clinical studies. This review article discusses therapies focused on prevention and treatment of CNS metastases, particularly regarding the BBB, and the challenges and opportunities these therapies present.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/prevenção & controle , Humanos
12.
Exp Neurol ; 267: 78-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25747036

RESUMO

Recently tremendous progress has been made in studying choroid plexus (CP) physiology and pathophysiology; and correcting several misconceptions about the CP. Specifically, the details of how CP, a locus of the blood-CSF barrier (BCSFB), secretes and purifies CSF, generates intracranial pressure (ICP), maintains CSF ion homeostasis, and provides micronutrients, proteins and hormones for neuronal and glial development, maintenance and function, are being understood on a molecular level. Unequivocal evidence that the CP secretory epithelium is the predominant supplier of CSF for the ventricles comes from multiple lines: uptake kinetics of tracer (22)Na and (36)Cl penetration from blood to CSF, autoradiographic mapping of rapid (22)Na and (36)Cl permeation (high permeability coefficients) into the cerebroventricles, CSF sampling from several different in vivo and in vitro CP preparations, CP hyperplasia that increases CSF formation and ICP; and in vitro analysis of CP ability to transport molecules (with expected directionality) and actively secrete fluid against an hydrostatic fluid column. Furthermore, clinical support for this CP-CSF model comes from neurosurgical procedures to remove lateral ventricle CPs in hydrocephalic children to reduce CSF formation, thereby relieving elevated ICP. In terms of micronutrient transport, ascorbic acid, folate and other essential factors are transported by specific (cloned) carriers across CP into ventricular CSF, from which they penetrate across the ependyma and pia mater deeply into the brain to support its viability and function. Without these choroidal functions, severe neurological disease and even death can occur. In terms of efflux or clearance transport, the active carriers (many of which have been cloned and expressed) in the CP basolateral and apical membranes perform regulatory removal of some metabolites (e.g. choline) and certain drugs (e.g. antibiotics like penicillin) from CSF, thus reducing agents such as penicillin to sub-therapeutic levels. Altogether, these multiple transport and secretory functions in CP support CSF homeostasis and fluid dynamics essential for brain function.


Assuntos
Barreira Hematoencefálica/fisiologia , Líquido Cefalorraquidiano/fisiologia , Plexo Corióideo/anatomia & histologia , Plexo Corióideo/fisiologia , Pressão Intracraniana/fisiologia , Adulto , Humanos
13.
Neuro Oncol ; 17(2): 289-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25015089

RESUMO

BACKGROUND: Breast cancer brain metastases (BCBM) are challenging complications that respond poorly to systemic therapy. The role of the blood-tumor barrier in limiting BCBM drug delivery and efficacy has been debated. Herein, we determined tissue and serum levels of capecitabine, its prodrug metabolites, and lapatinib in women with BCBM resected via medically indicated craniotomy. METHODS: Study patients with BCBM requiring surgical resection received either single-dose capecitabine (1250 mg/m(2)) 2-3 h before surgery or 2-5 doses of lapatinib (1250 mg) daily, the last dose 2-3 h before surgery. Serum samples were collected serially on the day of surgery. Drug concentrations were determined in serum and BCBM using liquid chromatography tandem mass spectrometry. RESULTS: Twelve patients were enrolled: 8 for capecitabine and 4 for lapatinib. Measurable drug levels of capecitabine and metabolites, 5'-deoxy-5-fluorocytidine, 5'-deoxy-5-fluorouridine, and 5-fluorouracil, were detected in all BCBM. The ratio of BCBM to serum was higher for 5-fluorouracil than for capecitabine. As for lapatinib, the median BCBM concentrations ranged from 1.0 to 6.5 µM. A high variability (0.19-9.8) was noted for lapatinib BCBM-to-serum ratio. CONCLUSIONS: This is the first study to demonstrate that capecitabine and lapatinib penetrate to a significant though variable degree in human BCBM. Drug delivery to BCBM is variable and in many cases appears partially limiting. Elucidating mechanisms that limit drug concentration and innovative approaches to overcome limited drug uptake will be important to improve clinical efficacy of these agents in the central nervous system. Trial registration ID: NCT00795678.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Desoxicitidina/análogos & derivados , Fluoruracila/análogos & derivados , Quinazolinas/uso terapêutico , Adulto , Idoso , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Química Encefálica , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Neoplasias da Mama/patologia , Capecitabina , Desoxicitidina/sangue , Desoxicitidina/farmacocinética , Desoxicitidina/uso terapêutico , Feminino , Fluoruracila/sangue , Fluoruracila/farmacocinética , Fluoruracila/uso terapêutico , Humanos , Lapatinib , Pessoa de Meia-Idade , Estudos Prospectivos , Quinazolinas/sangue , Quinazolinas/farmacocinética
14.
Acc Chem Res ; 47(10): 3110-7, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25207938

RESUMO

Natural metalloenzymes are often the most proficient catalysts in terms of their activity, selectivity, and ability to operate at mild conditions. However, metalloenzymes are occasionally surprising in their selection of catalytic metals, and in their responses to metal substitution. Indeed, from the isolated standpoint of producing the best catalyst, a chemist designing from first-principles would likely choose a different metal. For example, some enzymes employ a redox active metal where a simple Lewis acid is needed. Such are several hydrolases. In other cases, substitution of a non-native metal leads to radical improvements in reactivity. For example, histone deacetylase 8 naturally operates with Zn(2+) in the active site but becomes much more active with Fe(2+). For ß-lactamases, the replacement of the native Zn(2+) with Ni(2+) was suggested to lead to higher activity as predicted computationally. There are also intriguing cases, such as Fe(2+)- and Mn(2+)-dependent ribonucleotide reductases and W(4+)- and Mo(4+)-dependent DMSO reductases, where organisms manage to circumvent the scarcity of one metal (e.g., Fe(2+)) by creating protein structures that utilize another metal (e.g., Mn(2+)) for the catalysis of the same reaction. Naturally, even though both metal forms are active, one of the metals is preferred in every-day life, and the other metal variant remains dormant until an emergency strikes in the cell. These examples lead to certain questions. When are catalytic metals selected purely for electronic or structural reasons, implying that enzymatic catalysis is optimized to its maximum? When are metal selections a manifestation of competing evolutionary pressures, where choices are dictated not just by catalytic efficiency but also by other factors in the cell? In other words, how can enzymes be improved as catalysts merely through the use of common biological building blocks available to cells? Addressing these questions is highly relevant to the enzyme design community, where the goal is to prepare maximally efficient quasi-natural enzymes for the catalysis of reactions that interest humankind. Due to competing evolutionary pressures, many natural enzymes may not have evolved to be ideal catalysts and can be improved for the isolated purpose of catalysis in vitro when the competing factors are removed. The goal of this Account is not to cover all the possible stories but rather to highlight how variable enzymatic catalysis can be. We want to bring up possible factors affecting the evolution of enzyme structure, and the large- and intermediate-scale structural and electronic effects that metals can induce in the protein, and most importantly, the opportunities for optimization of these enzymes for catalysis in vitro.


Assuntos
Metaloproteínas/metabolismo , Metais/metabolismo , Biocatálise , Humanos , Metaloproteínas/química , Metais/química , Modelos Moleculares
15.
Lab Chip ; 13(23): 4573-82, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24096612

RESUMO

While many studies have examined the effects mechanical forces on vSMCs, there is a limited understanding of how the different arterial strain waveforms that occur in disease and different vascular beds alter vSMC mechanotransduction and phenotype. Here, we present a novel system for applying complex, time-varying strain waveforms to cultured cells and use this system to understand how these waveforms can alter vSMC phenotype and signaling. We have developed a highly adaptable cell culture system that allows the application of mechanical strain to cells in culture and can reproduce the complex dynamic mechanical environment experienced by arterial cells in the body. Using this system, we examined whether the type of applied strain waveform altered phenotypic modulation of vSMCs by mechanical forces. Cells exposed to the brachial waveform had increased phosphorylation of AKT, EGR-1, c-Fos expression and cytoskeletal remodeling in comparison to cells treated with the aortic waveform. In addition, vSMCs exposed to physiological waveforms had adopted a more differentiated phenotype in comparison to those treated with static or sinusoidal cyclic strain, with increased expression of vSMC markers desmin, calponin and SM-22 as well as increased expression of regulatory miRNAs including miR-143, -145 and -221. Taken together, our studies demonstrate the development of a novel system for applying complex, time-varying mechanical forces to cells in culture. In addition, we have shown that physiological strain waveforms have powerful effects on vSMC phenotype.


Assuntos
Técnicas de Cultura de Células/instrumentação , Miócitos de Músculo Liso/citologia , Estresse Mecânico , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Desmina/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Miócitos de Músculo Liso/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Calponinas
16.
Mol Cancer Ther ; 12(11): 2389-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002934

RESUMO

Brain (central nervous system; CNS) metastases pose a life-threatening problem for women with advanced metastatic breast cancer. It has recently been shown that the vasculature within preclinical brain metastasis model markedly restricts paclitaxel delivery in approximately 90% of CNS lesions. Therefore to improve efficacy, we have developed an ultra-small hyaluronic acid (HA) paclitaxel nanoconjugate (∼5 kDa) that can passively diffuse across the leaky blood-tumor barrier and then be taken up into cancer cells (MDA-MB-231Br) via CD44 receptor-mediated endocytocis. Using CD44 receptor-mediated endocytosis as an uptake mechanism, HA-paclitaxel was able to bypass p-glycoprotein-mediated efflux on the surface of the cancer cells. In vitro cytoxicity of the conjugate and free paclitaxel were similar in that they (i) both caused cell-cycle arrest in the G2-M phase, (ii) showed similar degrees of apoptosis induction (cleaved caspase), and (iii) had similar IC50 values when compared with paclitaxel in MTT assay. A preclinical model of brain metastases of breast cancer using intracardiac injections of Luc-2 transfected MDA-MB-231Br cells was used to evaluate in vivo efficacy of the nanoconjugate. The animals administered with HA-paclitaxel nanoconjugate had significantly longer overall survival compared with the control and the paclitaxel-treated group (P < 0.05). This study suggests that the small molecular weight HA-paclitaxel nanoconjugates can improve standard chemotherapeutic drug efficacy in a preclinical model of brain metastases of breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Ácido Hialurônico/farmacologia , Nanoconjugados , Paclitaxel/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/administração & dosagem , Ácido Hialurônico/farmacocinética , Células MCF-7 , Neoplasias Mamárias Experimentais , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico
17.
J Med Chem ; 56(17): 6696-708, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23947754

RESUMO

Combined inhibition of ribonucleotide reductase and deoxycytidine kinase (dCK) in multiple cancer cell lines depletes deoxycytidine triphosphate pools leading to DNA replication stress, cell cycle arrest, and apoptosis. Evidence implicating dCK in cancer cell proliferation and survival stimulated our interest in developing small molecule dCK inhibitors. Following a high throughput screen of a diverse chemical library, a structure-activity relationship study was carried out. Positron Emission Tomography (PET) using (18)F-L-1-(2'-deoxy-2'-FluoroArabinofuranosyl) Cytosine ((18)F-L-FAC), a dCK-specific substrate, was used to rapidly rank lead compounds based on their ability to inhibit dCK activity in vivo. Evaluation of a subset of the most potent compounds in cell culture (IC50 = ∼1-12 nM) using the (18)F-L-FAC PET pharmacodynamic assay identified compounds demonstrating superior in vivo efficacy.


Assuntos
Desoxicitidina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Método de Monte Carlo , Espectrometria de Massas por Ionização por Electrospray
18.
Annu Rev Phys Chem ; 64: 553-78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23561011

RESUMO

The general effective fragment potential (EFP) method provides model potentials for any molecule that is derived from first principles, with no empirically fitted parameters. The EFP method has been interfaced with most currently used ab initio single-reference and multireference quantum mechanics (QM) methods, ranging from Hartree-Fock and coupled cluster theory to multireference perturbation theory. The most recent innovations in the EFP model have been to make the computationally expensive charge transfer term much more efficient and to interface the general EFP dispersion and exchange repulsion interactions with QM methods. Following a summary of the method and its implementation in generally available computer programs, these most recent new developments are discussed.


Assuntos
Simulação por Computador , Modelos Moleculares , Teoria Quântica , Software , Água/química
19.
Med Care Res Rev ; 70(1 Suppl): 3S-13S, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23223330

RESUMO

The near ubiquitous access to information is transforming the roles and relationships among clinical professionals, patients, and their care givers in nearly all aspects of healthcare. Informed patients engage their physicians in conversations about their conditions, options and the tradeoffs among diagnostic and therapeutic benefits and harms. The processes of care today increasingly and explicitly integrate exploration of patient values and preferences as patients and clinicians jointly engage in reaching decisions about care. The informed patient of today who can understand and use scientific information can participate as an equal partner with her clinician. Others with beliefs or educational, cultural, or literacy backgrounds that pose challenges to comprehending and applying evidence may face disenfranchisement. These barriers are significant enough, even in the face of certainty of evidence, that clinicians and investigators have given much thought to how best to engage all patients in decision making. However, barriers remain, as most decision making must occur in settings where uncertainty, if not considerable uncertainty, accompanies any statement of what we know. In September 2011, health care and health communication experts came together in Rockville, Maryland under the auspices of the Agency for Healthcare Research and Quality (AHRQ) John M. Eisenberg Center for Clinical Decisions and Communications Science Annual Meeting to explore the challenges of differing levels of evidence in promoting shared decisions and to propose strategies for going forward in addressing these challenges. Eight scholarly papers emerged, and with this introductory article, comprise this special issue of Medical Care Research and Review.


Assuntos
Comunicação , Tomada de Decisões , Relações Médico-Paciente , Humanos , Educação de Pacientes como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA