Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 122023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665324

RESUMO

Crowding occurs when the presence of nearby features causes highly visible objects to become unrecognizable. Although crowding has implications for many everyday tasks and the tremendous amounts of research reflect its importance, surprisingly little is known about how depth affects crowding. Most available studies show that stereoscopic disparity reduces crowding, indicating that crowding may be relatively unimportant in three-dimensional environments. However, most previous studies tested only small stereoscopic differences in depth in which disparity, defocus blur, and accommodation are inconsistent with the real world. Using a novel multi-depth plane display, this study investigated how large (0.54-2.25 diopters), real differences in target-flanker depth, representative of those experienced between many objects in the real world, affect crowding. Our findings show that large differences in target-flanker depth increased crowding in the majority of observers, contrary to previous work showing reduced crowding in the presence of small depth differences. Furthermore, when the target was at fixation depth, crowding was generally more pronounced when the flankers were behind the target as opposed to in front of it. However, when the flankers were at fixation depth, crowding was generally more pronounced when the target was behind the flankers. These findings suggest that crowding from clutter outside the limits of binocular fusion can still have a significant impact on object recognition and visual perception in the peripheral field.


While human eyesight is clearest at the point where the gaze is focused, peripheral vision makes objects to the side visible. This ability to detect movement and objects in a wider field of vision helps people to have a greater awareness of their surroundings. However, it is more difficult to identify an object using peripheral vision when it is surrounded by other items. This phenomenon is known as crowding and can affect many aspects of daily life, such as driving or spotting a friend in a crowd. In our three-dimensional world, peripheral objects are often at different distances. This variation in depth could influence the effect of crowding, yet little is known about its effect. While previous research has investigated the effect of small differences in depth on crowding, the studies did not replicate real-world conditions. To replicate depths that are likely to be encountered in the real world, Smithers et al. created a display using multiple screens positioned 0.4, 1.26 and 4 meters from the viewer. Images were displayed on the screens and researchers measured how well study participants could identify a target image when it was surrounded by similar, nearby images displayed closer or further away than the target. The experiments showed that most viewers are less able to recognize a target object when there are surrounding items and this effect is worsened when the items are separated from the object by large differences in depth. The findings show that instead of diminishing the effect of crowding ­ as suggested by previous studies with small depth differences ­ large depth differences that more closely recreate those encountered in the real world can amplify the effect of crowding. This greater understanding of how humans process objects in three-dimensional environments could help to better estimate the impact of crowding on people with eye and neurological disorders. In turn, the information could be used to design environments that are easier for such individuals to navigate.


Assuntos
Técnicas Histológicas , Percepção Visual
2.
Artigo em Inglês | MEDLINE | ID: mdl-37043013

RESUMO

Polarization vision is used by a wide range of animals for navigating, orienting, and detecting objects or areas of interest. Shallow marine and semi-terrestrial crustaceans are particularly well known for their abilities to detect predator-like or conspecific-like objects based on their polarization properties. On land, some terrestrial invertebrates use polarization vision for detecting suitable habitats, oviposition sites or conspecifics, but examples of threat detection in the polarization domain are less well known. To test whether this also applies to crustaceans that have evolved to occupy terrestrial habitats, we determined the sensitivity of two species of land and one species of marine hermit crab to predator-like visual stimuli varying in the degree of polarization. All three species showed an ability to detect these cues based on polarization contrasts alone. One terrestrial species, Coenobita rugosus, showed an increased sensitivity to objects with a higher degree of polarization than the background. This is the inverse of most animals studied to date, suggesting that the ecological drivers for polarization vision may be different in the terrestrial environment.


Assuntos
Anomuros , Feminino , Animais , Anomuros/fisiologia , Ecossistema
3.
Sci Adv ; 5(8): eaax3572, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31457103

RESUMO

Many crustaceans are sensitive to the polarization of light and use this information for object-based visually guided behaviors. For these tasks, it is unknown whether polarization and intensity information are integrated into a single-contrast channel, whereby polarization directly contributes to perceived intensity, or whether they are processed separately and in parallel. Using a novel type of visual display that allowed polarization and intensity properties of visual stimuli to be adjusted independently and simultaneously, we conducted behavioral experiments with fiddler crabs to test which of these two models of visual processing occurs. We found that, for a loom detection task, fiddler crabs process polarization and intensity information independently and in parallel. The crab's response depended on whichever contrast was the most salient. By contributing independent measures of visual contrast, polarization and intensity provide a greater range of detectable contrast information for the receiver, increasing the chance of detecting a potential threat.


Assuntos
Crustáceos/fisiologia , Modelos Biológicos , Visão Ocular , Percepção Visual , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA