Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Med ; 3(11): 727-729, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370691

RESUMO

Plants are a rich source of chemotherapeutics and other essential medicines, but plant-based drug supply chains are unsustainable. Writing in Nature, Zhang et al.1 demonstrated a proof-of-concept alternate source of the anticancer drug vinblastine by engineering yeast to convert sugar and amino acids into its direct precursors, catharanthine and vindoline.


Assuntos
Antineoplásicos , Catharanthus , Catharanthus/química , Saccharomyces cerevisiae/genética , Antineoplásicos/metabolismo , Reatores Biológicos
2.
Proc Natl Acad Sci U S A ; 119(49): e2215372119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442128

RESUMO

Tropane alkaloids (TAs) are heterocyclic nitrogenous metabolites found across seven orders of angiosperms, including Malpighiales (Erythroxylaceae) and Solanales (Solanaceae). Despite the well-established euphorigenic properties of Erythroxylaceae TAs like cocaine, their biosynthetic pathway remains incomplete. Using yeast as a screening platform, we identified and characterized the missing steps of TA biosynthesis in Erythroxylum coca. We first characterize putative E. coca polyamine synthase- and amine oxidase-like enzymes in vitro, in yeast, and in planta to show that the first tropane ring closure in Erythroxylaceae occurs via bifunctional spermidine synthase/N-methyltransferases and both flavin- and copper-dependent amine oxidases. We next identify a SABATH family methyltransferase responsible for the 2-carbomethoxy moiety characteristic of Erythroxylaceae TAs and demonstrate that its coexpression with methylecgonone reductase in yeast engineered to express the Solanaceae TA pathway enables the production of a hybrid TA with structural features of both lineages. Finally, we use clustering analysis of Erythroxylum transcriptome datasets to discover a cytochrome P450 of the CYP81A family responsible for the second tropane ring closure in Erythroxylaceae, and demonstrate the function of the core coca TA pathway in vivo via reconstruction and de novo biosynthesis of methylecgonine in yeast. Collectively, our results provide strong evidence that TA biosynthesis in Erythroxylaceae and Solanaceae is polyphyletic and that independent recruitment of unique biosynthetic mechanisms and enzyme classes occurred at nearly every step in the evolution of this pathway.


Assuntos
Amina Oxidase (contendo Cobre) , Coca , Cocaína , Solanaceae , Saccharomyces cerevisiae , Tropanos , Solanaceae/genética , Aminas
3.
PLoS One ; 17(9): e0275298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166456

RESUMO

Tunable genetic controllers play a critical role in the engineering of biological systems that respond to environmental and cellular signals. RNA devices, a class of engineered RNA-based controllers, enable tunable gene expression control of target genes in response to molecular effectors. RNA devices have been demonstrated in a number of systems showing proof-of-concept of applying ligand-responsive control over therapeutic activities, including regulation of cell fate decisions such as T cell proliferation and apoptosis. Here, we describe the application of a theophylline-responsive RNA device in a muscle progenitor cell system to control myogenic differentiation. Ribozyme-based RNA switches responsive to theophylline control fluorescent reporter expression in C2C12 myoblasts in a ligand dependent manner. HRAS and JAK1, both anti-differentiation proteins, were incorporated into RNA devices. Finally, we demonstrate that the regulation of HRAS expression via theophylline-responsive RNA devices results in the modulation of myoblast differentiation in a theophylline-dependent manner. Our work highlights the potential for RNA devices to exert drug-responsive, tunable control over cell fate decisions with applications in stem cell therapy and basic stem cell biology research.


Assuntos
RNA Catalítico , RNA , Diferenciação Celular/genética , Ligantes , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , RNA/genética , RNA/metabolismo , RNA Catalítico/metabolismo , Teofilina/metabolismo , Teofilina/farmacologia
4.
PLoS One ; 17(9): e0273381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107884

RESUMO

Applications of synthetic biology spanning human health, industrial bioproduction, and ecosystem monitoring often require small molecule sensing capabilities, typically in the form of genetically encoded small molecule biosensors. Critical to the deployment of greater numbers of these systems are methods that support the rapid development of such biosensors against a broad range of small molecule targets. Here, we use a previously developed method for selection of RNA biosensors against unmodified small molecules (DRIVER) to perform a selection against a densely multiplexed mixture of small molecules, representative of those employed in high-throughput drug screening. Using a mixture of 5,120 target compounds randomly sampled from a large diversity drug screening library, we performed a 95-round selection and then analyzed the enriched RNA biosensor library using next generation sequencing (NGS). From our analysis, we identified RNA biosensors with at least 2-fold change in signal in the presence of at least 217 distinct target compounds with sensitivities down to 25 nM. Although many of these biosensors respond to multiple targets, clustering analysis indicated at least 150 different small-molecule sensing patterns. We also built a classifier that was able to predict whether the biosensors would respond to a new compound with an average precision of 0.82. Since the target compound library was designed to be representative of larger diversity compound libraries, we expect that the described approach can be used with similar compound libraries to identify aptamers against other small molecules with a similar success rate. The new RNA biosensors (or their component aptamers) described in this work can be further optimized and used in applications such as biosensing, gene control, or enzyme evolution. In addition, the data presented here provide an expanded compendium of new RNA aptamers compared to the 82 small molecule RNA aptamers published in the literature, allowing further bioinformatic analyses of the general classes of small molecules for which RNA aptamers can be found.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/genética , Ecossistema , Biblioteca Gênica , Humanos , RNA/genética , Técnica de Seleção de Aptâmeros/métodos
5.
Proc Natl Acad Sci U S A ; 119(33): e2205848119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939674

RESUMO

Tetrahydropapaverine (THP) and papaverine are plant natural products with clinically significant roles. THP is a precursor in the production of the drugs atracurium and cisatracurium, and papaverine is used as an antispasmodic during vascular surgery. In recent years, metabolic engineering advances have enabled the production of natural products through heterologous expression of pathway enzymes in yeast. Heterologous biosynthesis of THP and papaverine could play a role in ensuring a stable supply of these clinically significant products. Biosynthesis of THP and papaverine has not been achieved to date, in part because multiple pathway enzymes have not been elucidated. Here, we describe the development of an engineered yeast strain for de novo biosynthesis of THP. The production of THP is achieved through heterologous expression of two enzyme variants with activity on nonnative substrates. Through protein engineering, we developed a variant of N-methylcoclaurine hydroxylase with activity on coclaurine, enabling de novo norreticuline biosynthesis. Similarly, we developed a variant of scoulerine 9-O-methyltransferase capable of O-methylating 1-benzylisoquinoline alkaloids at the 3' position, enabling de novo THP biosynthesis. Flux through the heterologous pathway was improved by knocking out yeast multidrug resistance transporters and optimization of media conditions. Overall, strain engineering increased the concentration of biosynthesized THP 600-fold to 121 µg/L. Finally, we demonstrate a strategy for papaverine semisynthesis using hydrogen peroxide as an oxidizing agent. Through optimizing pH, temperature, reaction time, and oxidizing agent concentration, we demonstrated the ability to produce semisynthesized papaverine through oxidation of biosynthesized THP.


Assuntos
Produtos Biológicos , Papaverina , Engenharia de Proteínas , Saccharomyces cerevisiae , Produtos Biológicos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Peróxido de Hidrogênio/química , Oxidantes/química , Papaverina/biossíntese , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
6.
Nat Rev Genet ; 23(4): 215-228, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983970

RESUMO

The versatility of RNA in sensing and interacting with small molecules, proteins and other nucleic acids while encoding genetic instructions for protein translation makes it a powerful substrate for engineering biological systems. RNA devices integrate cellular information sensing, processing and actuation of specific signals into defined functions and have yielded programmable biological systems and novel therapeutics of increasing sophistication. However, challenges centred on expanding the range of analytes that can be sensed and adding new mechanisms of action have hindered the full realization of the field's promise. Here, we describe recent advances that address these limitations and point to a significant maturation of synthetic RNA-based devices.


Assuntos
Engenharia Genética , RNA , Regulação da Expressão Gênica , RNA/química , RNA/genética
7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903659

RESUMO

Benzylisoquinoline alkaloids (BIAs) are a diverse class of medicinal plant natural products. Nearly 500 dimeric bisbenzylisoquinoline alkaloids (bisBIAs), produced by the coupling of two BIA monomers, have been characterized and display a range of pharmacological properties, including anti-inflammatory, antitumor, and antiarrhythmic activities. In recent years, microbial platforms have been engineered to produce several classes of BIAs, which are rare or difficult to obtain from natural plant hosts, including protoberberines, morphinans, and phthalideisoquinolines. However, the heterologous biosyntheses of bisBIAs have thus far been largely unexplored. Here, we describe the engineering of yeast strains that produce the Type I bisBIAs guattegaumerine and berbamunine de novo. Through strain engineering, protein engineering, and optimization of growth conditions, a 10,000-fold improvement in the production of guattegaumerine, the major bisBIA pathway product, was observed. By replacing the cytochrome P450 used in the final coupling reaction with a chimeric variant, the product profile was inverted to instead produce solely berbamunine. Our highest titer engineered yeast strains produced 108 and 25 mg/L of guattegaumerine and berbamunine, respectively. Finally, the inclusion of two additional putative BIA biosynthesis enzymes, SiCNMT2 and NnOMT5, into our bisBIA biosynthetic strains enabled the production of two derivatives of bisBIA pathway intermediates de novo: magnocurarine and armepavine. The de novo heterologous biosyntheses of bisBIAs presented here provide the foundation for the production of additional medicinal bisBIAs in yeast.


Assuntos
Benzilisoquinolinas/metabolismo , Isoquinolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides/biossíntese , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fermentação , Engenharia Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Engenharia de Proteínas , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/metabolismo
8.
Elife ; 102021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34523419

RESUMO

Temporal dynamics of gene expression underpin responses to internal and environmental stimuli. In eukaryotes, regulation of gene induction includes changing chromatin states at target genes and recruiting the transcriptional machinery that includes transcription factors. As one of the most potent defense compounds in Arabidopsis thaliana, camalexin can be rapidly induced by bacterial and fungal infections. Though several transcription factors controlling camalexin biosynthesis genes have been characterized, how the rapid activation of genes in this pathway upon a pathogen signal is enabled remains unknown. By combining publicly available epigenomic data with in vivo chromatin modification mapping, we found that camalexin biosynthesis genes are marked with two epigenetic modifications with opposite effects on gene expression, trimethylation of lysine 27 of histone 3 (H3K27me3) (repression) and acetylation of lysine 18 of histone 3 (H3K18ac) (activation), to form a previously uncharacterized type of bivalent chromatin. Mutants with reduced H3K27me3 or H3K18ac suggested that both modifications were required to determine the timing of gene expression and metabolite accumulation at an early stage of the stress response. Our study indicates that the H3K27me3-H3K18ac bivalent chromatin, which we name as kairostat, plays an important role in controlling the timely induction of gene expression upon stress stimuli in plants.


In the fight against harmful fungi and bacteria, plants have an arsenal of chemicals at their disposal. For instance, species in the crucifer family ­ which includes mustard, cabbages and the model plant Arabidopsis thaliana ­ can defend themselves with camalexin, a compound produced soon after the plant receives signals from its attacker. What controls this precise timing, however, is still unclear. For the genes that rule the production of camalexin to be 'read', interpreted, and ultimately converted into proteins, their DNA sequences first need to be physically accessible to the cell. This availability is controlled, in part, by adding or removing chemical groups onto histones, the spool-like structures which DNA wraps around. These precisely controlled modifications ultimately help to activate or repress a gene. Sometimes, activating and inhibiting chemical groups can be present in the same location, creating what is known as a bivalent chromatin domain. Zhao et al. investigated whether histone modifications regulate when A. thaliana produces camalexin in response to an attack. A combination of bioinformatics and experimental approaches highlighted two chemical modifications (one repressive, the other activating) which were present on the same histone, forming a previously unknown bivalent chromatin domain. Mutant plants which did not carry these modifications could not produce camalexin at the right time. Further experiments showed that under normal conditions, both histone modifications were present. However, when the plant was under attack, the level of repressive and activating modifications respectively decreased and increased, leading to gene activation. Together, the results by Zhao et al. suggest that both histone modifications are required for camalexin genes to respond appropriately to signals from a harmful agent. A deeper understanding of this new mechanism could, in turn, allow scientists to engineer crops that are better at resisting disease.


Assuntos
Arabidopsis/genética , Cromatina , Indóis/metabolismo , Tiazóis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia
9.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34140414

RESUMO

Microbial biosynthesis of plant natural products (PNPs) can facilitate access to valuable medicinal compounds and derivatives. Such efforts are challenged by metabolite transport limitations, which arise when complex plant pathways distributed across organelles and tissues are reconstructed in unicellular hosts without concomitant transport machinery. We recently reported an engineered yeast platform for production of the tropane alkaloid (TA) drugs hyoscyamine and scopolamine, in which product accumulation is limited by vacuolar transport. Here, we demonstrate that alleviation of transport limitations at multiple steps in an engineered pathway enables increased production of TAs and screening of useful derivatives. We first show that supervised classifier models trained on a tissue-delineated transcriptome from the TA-producing plant Atropa belladonna can predict TA transporters with greater efficacy than conventional regression- and clustering-based approaches. We demonstrate that two of the identified transporters, AbPUP1 and AbLP1, increase TA production in engineered yeast by facilitating vacuolar export and cellular reuptake of littorine and hyoscyamine. We incorporate four different plant transporters, cofactor regeneration mechanisms, and optimized growth conditions into our yeast platform to achieve improvements in de novo hyoscyamine and scopolamine production of over 100-fold (480 µg/L) and 7-fold (172 µg/L). Finally, we leverage computational tools for biosynthetic pathway prediction to produce two different classes of TA derivatives, nortropane alkaloids and tropane N-oxides, from simple precursors. Our work highlights the importance of cellular transport optimization in recapitulating complex PNP biosyntheses in microbial hosts and illustrates the utility of computational methods for gene discovery and expansion of heterologous biosynthetic diversity.


Assuntos
Vias Biossintéticas , Engenharia Metabólica , Metaboloma , Saccharomyces cerevisiae/metabolismo , Tropanos/metabolismo , Transporte Biológico , Simulação por Computador , Oxirredução , Filogenia , Especificidade por Substrato
10.
Elife ; 102021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33860764

RESUMO

Ribozyme switches are a class of RNA-encoded genetic switch that support conditional regulation of gene expression across diverse organisms. An improved elucidation of the relationships between sequence, structure, and activity can improve our capacity for de novo rational design of ribozyme switches. Here, we generated data on the activity of hundreds of thousands of ribozyme sequences. Using automated structural analysis and machine learning, we leveraged these large data sets to develop predictive models that estimate the in vivo gene-regulatory activity of a ribozyme sequence. These models supported the de novo design of ribozyme libraries with low mean basal gene-regulatory activities and new ribozyme switches that exhibit changes in gene-regulatory activity in the presence of a target ligand, producing functional switches for four out of five aptamers. Our work examines how biases in the model and the data set that affect prediction accuracy can arise and demonstrates that machine learning can be applied to RNA sequences to predict gene-regulatory activity, providing the basis for design tools for functional RNAs.


Assuntos
Aptâmeros de Nucleotídeos/genética , Regulação da Expressão Gênica , Aprendizado de Máquina , Modelos Genéticos , Redes Neurais de Computação , RNA Catalítico/genética , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Desenho Assistido por Computador , Escherichia coli/enzimologia , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala , Ligantes , Conformação de Ácido Nucleico , RNA Catalítico/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Análise de Sequência de RNA , Relação Estrutura-Atividade
11.
Nat Commun ; 12(1): 1437, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664255

RESUMO

Biosensors are key components in engineered biological systems, providing a means of measuring and acting upon the large biochemical space in living cells. However, generating small molecule sensing elements and integrating them into in vivo biosensors have been challenging. Here, using aptamer-coupled ribozyme libraries and a ribozyme regeneration method, de novo rapid in vitro evolution of RNA biosensors (DRIVER) enables multiplexed discovery of biosensors. With DRIVER and high-throughput characterization (CleaveSeq) fully automated on liquid-handling systems, we identify and validate biosensors against six small molecules, including five for which no aptamers were previously found. DRIVER-evolved biosensors are applied directly to regulate gene expression in yeast, displaying activation ratios up to 33-fold. DRIVER biosensors are also applied in detecting metabolite production from a multi-enzyme biosynthetic pathway. This work demonstrates DRIVER as a scalable pipeline for engineering de novo biosensors with wide-ranging applications in biomanufacturing, diagnostics, therapeutics, and synthetic biology.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , RNA Catalítico/química , Biologia Sintética/métodos , Expressão Gênica/genética , Proteínas de Fluorescência Verde/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Nat Commun ; 12(1): 1579, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707425

RESUMO

Random mutagenesis is a technique used to generate diversity and engineer biological systems. In vivo random mutagenesis generates diversity directly in a host organism, enabling applications such as lineage tracing, continuous evolution, and protein engineering. Here we describe TRIDENT (TaRgeted In vivo Diversification ENabled by T7 RNAP), a platform for targeted, continual, and inducible diversification at genes of interest at mutation rates one-million fold higher than natural genomic error rates. TRIDENT targets mutagenic enzymes to precise genetic loci by fusion to T7 RNA polymerase, resulting in mutation windows following a mutation targeting T7 promoter. Mutational diversity is tuned by DNA repair factors localized to sites of deaminase-driven mutation, enabling sustained mutation of all four DNA nucleotides at rates greater than 10-4 mutations per bp. We show TRIDENT can be applied to routine in vivo mutagenesis applications by evolving a red-shifted fluorescent protein and drug-resistant mutants of an essential enzyme.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular Direcionada/métodos , Farmacorresistência Fúngica/genética , Engenharia de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Virais/metabolismo , Antifúngicos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagênese/genética , Regiões Promotoras Genéticas/genética , Pirimetamina/farmacologia
13.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127687

RESUMO

Chalcone synthase (CHS) canonically catalyzes carbon-carbon bond formation through iterative decarboxylative Claisen condensation. Here, we characterize a previously unidentified biosynthetic capability of SlCHS to catalyze nitrogen-carbon bond formation, leading to the production of a hydroxycinnamic acid amide (HCAA) compound. By expressing a putative tomato (Solanum lycopersicum) gene cluster in yeast (Saccharomyces cerevisiae), we elucidate the activity of a pathway consisting of a carboxyl methyltransferase (SlMT2), which methylates the yeast primary metabolite 3-hydroxyanthranilic acid (3-HAA) to form a methyl ester, and a SlCHS, which catalyzes the condensation of 3-HAA methyl ester and p-coumaroyl-coenzyme A (CoA) through formation of an amide bond. We demonstrate that this aminoacylation activity could be a common secondary activity in plant CHSs by validating the activity in vitro with variants from S. lycopersicum and Arabidopsis thaliana Our work demonstrates yeast as a platform for characterizing putative plant gene clusters with the potential for compound structure and enzymatic activity discovery.


Assuntos
Arabidopsis , Solanum lycopersicum , Aciltransferases , Amidas/metabolismo , Arabidopsis/genética , Carbono/metabolismo , Chalconas , Ésteres/metabolismo , Solanum lycopersicum/genética , Família Multigênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Nature ; 585(7826): 614-619, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879484

RESUMO

Tropane alkaloids from nightshade plants are neurotransmitter inhibitors that are used for treating neuromuscular disorders and are classified as essential medicines by the World Health Organization1,2. Challenges in global supplies have resulted in frequent shortages of these drugs3,4. Further vulnerabilities in supply chains have been revealed by events such as the Australian wildfires5 and the COVID-19 pandemic6. Rapidly deployable production strategies that are robust to environmental and socioeconomic upheaval7,8 are needed. Here we engineered baker's yeast to produce the medicinal alkaloids hyoscyamine and scopolamine, starting from simple sugars and amino acids. We combined functional genomics to identify a missing pathway enzyme, protein engineering to enable the functional expression of an acyltransferase via trafficking to the vacuole, heterologous transporters to facilitate intracellular routing, and strain optimization to improve titres. Our integrated system positions more than twenty proteins adapted from yeast, bacteria, plants and animals across six sub-cellular locations to recapitulate the spatial organization of tropane alkaloid biosynthesis in plants. Microbial biosynthesis platforms can facilitate the discovery of tropane alkaloid derivatives as new therapeutic agents for neurological disease and, once scaled, enable robust and agile supply of these essential medicines.


Assuntos
Alcaloides/biossíntese , Alcaloides/provisão & distribuição , Hiosciamina/biossíntese , Saccharomyces cerevisiae/metabolismo , Escopolamina/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Atropa belladonna/enzimologia , Derivados da Atropina/metabolismo , Transporte Biológico , Datura/enzimologia , Glucosídeos/biossíntese , Glucosídeos/metabolismo , Hiosciamina/provisão & distribuição , Lactatos/metabolismo , Ligases/genética , Ligases/metabolismo , Modelos Moleculares , Doenças do Sistema Nervoso/tratamento farmacológico , Oxirredutases/genética , Oxirredutases/metabolismo , Engenharia de Proteínas , Saccharomyces cerevisiae/genética , Escopolamina/provisão & distribuição , Vacúolos/metabolismo
15.
Nat Commun ; 11(1): 2113, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355169

RESUMO

Promoters play a central role in controlling gene regulation; however, a small set of promoters is used for most genetic construct design in the yeast Saccharomyces cerevisiae. Generating and utilizing models that accurately predict protein expression from promoter sequences would enable rapid generation of useful promoters and facilitate synthetic biology efforts in this model organism. We measure the gene expression activity of over 675,000 sequences in a constitutive promoter library and over 327,000 sequences in an inducible promoter library. Training an ensemble of convolutional neural networks jointly on the two data sets enables very high (R2 > 0.79) predictive accuracies on multiple sequence-activity prediction tasks. We describe model-guided design strategies that yield large, sequence-diverse sets of promoters exhibiting activities higher than those represented in training data and similar to current best-in-class sequences. Our results show the value of model-guided design as an approach for generating useful DNA parts.


Assuntos
Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Separação Celular , Simulação por Computador , Citometria de Fluxo , Proteínas Fúngicas/genética , Biblioteca Gênica , Aprendizado de Máquina , Redes Neurais de Computação , Biologia Sintética/métodos
16.
Nat Commun ; 10(1): 4327, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548547

RESUMO

Synthetic RNA-based genetic devices dynamically control a wide range of gene-regulatory processes across diverse cell types. However, the limited throughput of quantitative assays in mammalian cells has hindered fast iteration and interrogation of sequence space needed to identify new RNA devices. Here we report developing a quantitative, rapid and high-throughput mammalian cell-based RNA-Seq assay to efficiently engineer RNA devices. We identify new ribozyme-based RNA devices that respond to theophylline, hypoxanthine, cyclic-di-GMP, and folinic acid from libraries of ~22,700 sequences in total. The small molecule responsive devices exhibit low basal expression and high activation ratios, significantly expanding our toolset of highly functional ribozyme switches. The large datasets obtained further provide conserved sequence and structure motifs that may be used for rationally guided design. The RNA-Seq approach offers a generally applicable strategy for developing broad classes of RNA devices, thereby advancing the engineering of genetic devices for mammalian systems.


Assuntos
Mamíferos/genética , RNA Catalítico/química , RNA-Seq/métodos , Biologia Sintética/métodos , Animais , Redes Reguladoras de Genes , Engenharia Genética , Células HEK293 , Humanos , Motivos de Nucleotídeos , RNA Catalítico/metabolismo , RNA Catalítico/fisiologia
17.
Nat Commun ; 10(1): 3634, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406117

RESUMO

Tropane alkaloids (TAs) are a class of phytochemicals produced by plants of the nightshade family used for treating diverse neurological disorders. Here, we demonstrate de novo production of tropine, a key intermediate in the biosynthetic pathway of medicinal TAs such as scopolamine, from simple carbon and nitrogen sources in yeast (Saccharomyces cerevisiae). Our engineered strain incorporates 15 additional genes, including 11 derived from diverse plants and bacteria, and 7 disruptions to yeast regulatory or biosynthetic proteins to produce tropine at titers of 6 mg/L. We also demonstrate the utility of our engineered yeast platform for the discovery of TA derivatives by combining biosynthetic modules from distant plant lineages to achieve de novo production of cinnamoyltropine, a non-canonical TA. Our engineered strain constitutes a starting point for future optimization efforts towards realizing industrial fermentation of medicinal TAs and a platform for the synthesis of TA derivatives with enhanced bioactivities.


Assuntos
Reatores Biológicos/microbiologia , Engenharia Metabólica/métodos , Compostos Fitoquímicos/biossíntese , Saccharomyces cerevisiae/metabolismo , Tropanos/metabolismo , Saccharomyces cerevisiae/genética , Solanaceae/metabolismo , Alcaloides de Solanáceas/biossíntese
18.
Nat Commun ; 10(1): 2673, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209208

RESUMO

Alternative splicing performs a central role in expanding genomic coding capacity and proteomic diversity. However, programming of splicing patterns in engineered biological systems remains underused. Synthetic approaches thus far have predominantly focused on controlling expression of a single protein through alternative splicing. Here, we describe a modular and extensible platform for regulating four programmable exons that undergo a mutually exclusive alternative splicing event to generate multiple functionally-distinct proteins. We present an intron framework that enforces the mutual exclusivity of two internal exons and demonstrate a graded series of consensus sequence elements of varying strengths that set the ratio of two mutually exclusive isoforms. We apply this framework to program the DNA-binding domains of modular transcription factors to differentially control downstream gene activation. This splicing platform advances an approach for generating diverse isoforms and can ultimately be applied to program modular proteins and increase coding capacity of synthetic biological systems.


Assuntos
Processamento Alternativo/genética , Regulação da Expressão Gênica/genética , Engenharia Genética/métodos , RNA/genética , Fatores de Transcrição/genética , Motivos de Aminoácidos/genética , Animais , Linhagem Celular , Biologia Computacional , Sequência Consenso/genética , Éxons/genética , Biblioteca Gênica , Genes Reporter/genética , Humanos , Íntrons/genética , Mutagênese Sítio-Dirigida/métodos , Domínios Proteicos/genética , Isoformas de Proteínas/genética , RNA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
Metab Eng Commun ; 9: e00092, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31110942

RESUMO

Cyanogenic glycosides are defense compounds found in a wide range of plant species, including many crops. We demonstrate that the cyanogenic glucoside dhurrin, naturally found in sorghum, can be produced at high titers in Saccharomyces cerevisiae, constituting the first report of cyanogenic glycoside production in a microbe. Genetic modifications to increase the supply of the dhurrin precursor tyrosine enabled dhurrin production in excess of 80 mg/L. The dhurrin-producing yeast strain was used as a chassis to investigate previously uncharacterized enzymes identified close to the biosynthetic gene cluster containing the dhurrin pathway enzymes. This work shows the potential of heterologous expression in yeast to facilitate investigations of plant cyanogenic glycoside pathways.

20.
Nat Commun ; 10(1): 2142, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086174

RESUMO

Metabolic engineers endeavor to create a bio-based manufacturing industry using microbes to produce fuels, chemicals, and medicines. Plant natural products (PNPs) are historically challenging to produce and are ubiquitous in medicines, flavors, and fragrances. Engineering PNP pathways into new hosts requires finding or modifying a suitable host to accommodate the pathway, planning and implementing a biosynthetic route to the compound, and discovering or engineering enzymes for missing steps. In this review, we describe recent developments in metabolic engineering at the level of host, pathway, and enzyme, and discuss how the field is approaching ever more complex biosynthetic opportunities.


Assuntos
Produtos Biológicos/metabolismo , Engenharia Metabólica/métodos , Microrganismos Geneticamente Modificados/metabolismo , Plantas/metabolismo , Vias Biossintéticas/genética , Enzimas/genética , Enzimas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Engenharia Metabólica/tendências , Microrganismos Geneticamente Modificados/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodos , Biologia Sintética/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA