Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell ; 11: 57-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384676

RESUMO

Lipidomic analysis in diverse biological settings has become a frequent tool to increase our understanding of the processes of life. Cellular lipids play important roles not only as being the main components of cellular membranes, but also in the regulation of cell homeostasis as lipid signaling molecules. Yeast has been harnessed for biomedical research based on its good conservation of genetics and fundamental cell organisation principles and molecular pathways. Further application in so-called humanised yeast models have been developed which take advantage of yeast as providing the basics of a living cell with full control over heterologous expression. Here we present evidence that high-performance thin-layer chromatography (HPTLC) represents an effective alternative to replace cost intensive mass spectrometry-based lipidomic analyses. We provide statistical comparison of identical samples by both methods, which support the use of HPTLC for quantitative analysis of the main yeast lipid classes.

2.
iScience ; 26(9): 107539, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636069

RESUMO

The dynamic nature of the actin cytoskeleton is required to coordinate many cellular processes, and a loss of its plasticity has been linked to accelerated cell aging and attenuation of adaptive response mechanisms. Cofilin is an actin-binding protein that controls actin dynamics and has been linked to mitochondrial signaling pathways that control drug resistance and cell death. Here we show that cofilin-driven chronic depolarization of the actin cytoskeleton activates cell wall integrity mitogen-activated protein kinase (MAPK) signalling and disrupts lipid homeostasis in a voltage-dependent anion channel (VDAC)-dependent manner. Expression of the cof1-5 mutation, which reduces the dynamic nature of actin, triggers loss of cell wall integrity, vacuole fragmentation, disruption of lipid homeostasis, lipid droplet (LD) accumulation, and the promotion of cell death. The integrity of the actin cytoskeleton is therefore essential to maintain the fidelity of MAPK signaling, lipid homeostasis, and cell health in S. cerevisiae.

3.
J Proteome Res ; 22(6): 1790-1799, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37053475

RESUMO

BCR-ABL is the oncogenic fusion product of tyrosine kinase ABL1 and a highly frequent driver of acute lymphocytic leukemia (ALL) and chronic myeloid leukemia (CML). The kinase activity of BCR-ABL is strongly elevated; however, changes of substrate specificity in comparison to wild-type ABL1 kinase are less well characterized. Here, we heterologously expressed full-length BCR-ABL kinases in yeast. We exploited the proteome of living yeast as an in vivo phospho-tyrosine substrate for assaying human kinase specificity. Phospho-proteomic analysis of ABL1 and BCR-ABL isoforms p190 and p210 yielded a high-confidence data set of 1127 phospho-tyrosine sites on 821 yeast proteins. We used this data set to generate linear phosphorylation site motifs for ABL1 and the oncogenic ABL1 fusion proteins. The oncogenic kinases yielded a substantially different linear motif when compared to ABL1. Kinase set enrichment analysis with human pY-sites that have high linear motif scores well-recalled BCR-ABL driven cancer cell lines from human phospho-proteome data sets.


Assuntos
Proteínas de Fusão bcr-abl , Saccharomyces cerevisiae , Humanos , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteômica , Proteoma/genética , Proteoma/metabolismo , Proteínas de Fusão Oncogênica , Tirosina/metabolismo
4.
Cell Death Differ ; 25(4): 767-783, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29230001

RESUMO

The loss of lipid homeostasis can lead to lipid overload and is associated with a variety of disease states. However, little is known as to how the disruption of lipid regulation or lipid overload affects cell survival. In this study we investigated how excess diacylglycerol (DG), a cardinal metabolite suspected to mediate lipotoxicity, compromises the survival of yeast cells. We reveal that increased DG achieved by either genetic manipulation or pharmacological administration of 1,2-dioctanoyl-sn-glycerol (DOG) triggers necrotic cell death. The toxic effects of DG are linked to glucose metabolism and require a functional Rim101 signaling cascade involving the Rim21-dependent sensing complex and the activation of a calpain-like protease. The Rim101 cascade is an established pathway that triggers a transcriptional response to alkaline or lipid stress. We propose that the Rim101 pathway senses DG-induced lipid perturbation and conducts a signaling response that either facilitates cellular adaptation or triggers lipotoxic cell death. Using established models of lipotoxicity, i.e., high-fat diet in Drosophila and palmitic acid administration in cultured human endothelial cells, we present evidence that the core mechanism underlying this calpain-dependent lipotoxic cell death pathway is phylogenetically conserved.


Assuntos
Diglicerídeos/farmacologia , Modelos Biológicos , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Drosophila melanogaster , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Necrose , Ácido Palmítico/farmacologia , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA