Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Transl Psychiatry ; 13(1): 273, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524707

RESUMO

The endocannabinoid system (ECS) plays a key modulatory role during synaptic plasticity and homeostatic processes in the brain and has an important role in the neurobiological processes underlying drug addiction. We have previously shown that an elevated ECS response to psychostimulant (cocaine) is involved in regulating the development and expression of cocaine-conditioned reward and sensitization. We therefore hypothesized that drug-induced elevation in endocannabinoids (eCBs) and/or eCB-like molecules (eCB-Ls) may represent a protective mechanism against drug insult, and boosting their levels exogenously may strengthen their neuroprotective effects. Here, we determine the involvement of ECS in alcohol addiction. We first measured the eCBs and eCB-Ls levels in different brain reward system regions following chronic alcohol self-administration using LC-MS. We have found that following chronic intermittent alcohol consumption, N-oleoyl glycine (OlGly) levels were significantly elevated in the prefrontal cortex (PFC), and N-oleoyl alanine (OlAla) was significantly elevated in the PFC, nucleus accumbens (NAc) and ventral tegmental area (VTA) in a region-specific manner. We next tested whether exogenous administration of OlGly or OlAla would attenuate alcohol consumption and preference. We found that systemic administration of OlGly or OlAla (60 mg/kg, intraperitoneal) during intermittent alcohol consumption significantly reduced alcohol intake and preference without affecting the hedonic state. These findings suggest that the ECS negatively regulates alcohol consumption and boosting selective eCBs exogenously has beneficial effects against alcohol consumption and potentially in preventing relapse.


Assuntos
Cocaína , Glicina , Camundongos , Animais , Glicina/farmacologia , Glicina/metabolismo , Etanol/metabolismo , Encéfalo , Núcleo Accumbens , Recompensa , Área Tegmentar Ventral
2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047147

RESUMO

Streptococcus mutans is a cariogenic bacterium in the oral cavity involved in plaque formation and dental caries. The endocannabinoid anandamide (AEA), a naturally occurring bioactive lipid, has been shown to have anti-bacterial and anti-biofilm activities against Staphylococcus aureus. We aimed here to study its effects on S. mutans viability, biofilm formation and extracellular polysaccharide substance (EPS) production. S. mutans were cultivated in the absence or presence of various concentrations of AEA, and the planktonic growth was followed by changes in optical density (OD) and colony-forming units (CFU). The resulting biofilms were examined by MTT metabolic assay, Crystal Violet (CV) staining, spinning disk confocal microscopy (SDCM) and high-resolution scanning electron microscopy (HR-SEM). The EPS production was determined by Congo Red and fluorescent dextran staining. Membrane potential and membrane permeability were determined by diethyloxacarbocyanine iodide (DiOC2(3)) and SYTO 9/propidium iodide (PI) staining, respectively, using flow cytometry. We observed that AEA was bactericidal to S. mutans at 12.5 µg/mL and prevented biofilm formation at the same concentration. AEA reduced the biofilm thickness and biomass with concomitant reduction in total EPS production, although there was a net increase in EPS per bacterium. Preformed biofilms were significantly affected at 50 µg/mL AEA. We further show that AEA increased the membrane permeability and induced membrane hyperpolarization of these bacteria. AEA caused S. mutans to become elongated at the minimum inhibitory concentration (MIC). Gene expression studies showed a significant increase in the cell division gene ftsZ. The concentrations of AEA needed for the anti-bacterial effects were below the cytotoxic concentration for normal Vero epithelial cells. Altogether, our data show that AEA has anti-bacterial and anti-biofilm activities against S. mutans and may have a potential role in preventing biofilms as a therapeutic measure.


Assuntos
Cárie Dentária , Streptococcus mutans , Humanos , Endocanabinoides/metabolismo , Cárie Dentária/prevenção & controle , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo
3.
Cannabis Cannabinoid Res ; 8(6): 1060-1068, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-35984924

RESUMO

Introduction: Cancer patients report nausea as a side effect of their chemotherapy treatment. Using the pre-clinical rodent model of acute nausea-lithium chloride (LiCl)-induced conditioned gaping-our group has demonstrated that exogenous cannabinoids may have antinausea potential. Materials and Methods: With the goal of evaluating the role of sex as a factor in pre-clinical research, we first compared the conditioned gaping reactions produced by varying doses of LiCl in male and female rats using the taste reactivity test (Experiment 1). Results: LiCl produced dose-dependent conditioned gaping similarly in male and female rats with the highest dose (127.2 mg/kg) producing robust conditioned gaping, with this dose used in subsequent experiments. Next, we examined the antinausea potential of THC (Experiment 2), CBD (Experiment 3), cannabidiolic acid (CBDA; Experiment 4) and oleoyl alanine (OlAla; Experiment 5) in both male and female rats. THC, CBD, CBDA, and OlAla dose dependently reduced conditioned gaping in both male and female rats in a similar manner. Conclusions: These results suggest that cannabinoids may be equally effective in treating nausea in both males and females.


Assuntos
Antieméticos , Canabidiol , Canabinoides , Humanos , Feminino , Masculino , Ratos , Animais , Canabidiol/efeitos adversos , Ratos Sprague-Dawley , Dronabinol/efeitos adversos , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Caracteres Sexuais , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Náusea/induzido quimicamente , Náusea/tratamento farmacológico
4.
Cannabis Cannabinoid Res ; 8(5): 812-823, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35647907

RESUMO

Introduction: The endocannabinoid system (ECS) plays a key modulatory role during synaptic plasticity and homeostatic processes in the brain and plays an important role in the neurobiological processes underlying drug addiction. Impaired endocannabinoid (eCB) signaling contributes to dysregulated synaptic plasticity, increased stress responsivity, and craving that propel addiction. Therefore, we hypothesized that boosting the ECS by exogenous administration of selective eCBs will attenuate cocaine-induced behaviors. Materials and Methods: The behavioral paradigms included psychomotor sensitization (PS) and conditioned place preference (CPP). Liquid chromatography-mass spectrometry analysis was used for quantitative profiling of eCBs in mouse brain. Results: We first measured the levels of eCBs in different brain areas of the reward system following chronic cocaine treatment. We found that following daily administration of cocaine, the levels of N-oleoyl glycine (OlGly) were significantly elevated in the nucleus accumbens (NAc) in a region-specific manner. We next tested whether administration of OlGly will attenuate cocaine-induced behaviors. We found that administration of OlGly during withdrawal, but not during acquisition of PS, attenuated the expression of cocaine sensitization. In addition, the administration of OlGly during the acquisition of cocaine CPP, but not during withdrawal, attenuated the expression of cocaine-conditioned reward. To enhance the stability of OlGly and its duration of action, two methylated derivatives of OlGly were synthesized, the monomethylated OlGly (HU-595) and dimethylated OlGly (HU-596). We found that the effect of administration of HU-595 or HU-596 during cocaine conditioning did not differ from the OlGly-induced decrease in the expression of CPP. Conclusion: Our findings suggest that the ECS is involved in the common neurobiological mechanisms underlying the development and expression of cocaine reward and drug-seeking. Boosting the ECS exogenously has beneficial effects against cocaine-induced behaviors.


Assuntos
Cocaína , Camundongos , Animais , Cocaína/farmacologia , Cocaína/metabolismo , Glicina/farmacologia , Glicina/metabolismo , Endocanabinoides/metabolismo , Recompensa , Núcleo Accumbens/metabolismo
5.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552848

RESUMO

BACKGROUND: In a previous report, we have identified the cannabinoid receptor 2 (CB2) agonist HU308 to possess a beneficial effect in preventing age and trauma-induced osteoarthritis (OA) in mice. The effects of HU308 were largely related to the capacity of this compound to induce cartilage anabolism which was dependent on the CREB/SOX9 axis, and exhibited pro-survival and pro-proliferative hallmarks of articular cartilage following treatment. Here, we utilized the novel cannabinoid-fenchone CB2 agonists (1B, 1D), which were previously reported to render anti-inflammatory effects in a zymosan model. METHODS: Initially, we assessed the selectivity of CB2 using a Gs-protein receptor cAMP potency assay, which was also validated for antagonistic effects dependent on the Gi-protein receptor cAMP pathway. Based on EC50 values, 1D was selected for a zymosan inflammatory pain model. Next, 1D was administered in two doses intra-articularly (IA), in a post-traumatic medial meniscal tear (MMT, Lewis rats) model, and compared to sham, vehicle, and a positive control consisting of fibroblast growth factor 18 (FGF18) administration. The histopathological assessment was carried out according to the Osteoarthritis Research Society International (OARSI) guidelines for rat models following 28 days post-MMT. RESULTS: The G protein receptor assays confirmed that both 1B and 1D possess CB2 agonistic effects in cell lines and in chondrocytes. Co-administering a CB2 antagonists to 25 mg/kg 1D in a paw inflammatory pain model abolished 1D-related anti-swelling effect and partially abolishing its analgesic effects. Using an MMT model, the high dose (i.e., 24 µg) of 1D administered via IA route, exhibited reduced cartilage damage. Particularly, this dose of 1D exhibited a 30% improvement in cartilage degeneration (zonal/total tibial scores) and lesion depth ratios (44%), comparable to the FGF18 positive control. Synovitis scores remained unaffected and histopathologic evaluation of subchondral bone damage did not suggest that 1D treatment changed the load-bearing ability of the rats. Contrary to the anabolic effect of FGF18, synovial inflammation was observed and was accompanied by increased osteophyte size. CONCLUSION: The structural histopathological analysis supports a disease-modifying effect of IA-administered 1D compound without any deleterious effects on the joint structure.


Assuntos
Osteoartrite , Ratos , Camundongos , Animais , Zimosan , Ratos Endogâmicos Lew , Osteoartrite/metabolismo , Dor/patologia
7.
Biomedicines ; 10(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35884854

RESUMO

Modulation of the endogenous cannabinoid system has been suggested as a potential anticancer strategy. In the search for novel and less toxic therapeutic options, structural modifications of the endocannabinoid anandamide and the synthetic derivative of oleic acid, Minerval (HU-600), were done to obtain 2-hydroxy oleic acid ethanolamide (HU-585), which is an HU-600 derivative with the anandamide side chain. We showed that treatment of SK-N-SH neuroblastoma cells with HU-585 induced a better anti-tumorigenic effect in comparison to HU-600 as evidenced by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide assay, colony-forming assay, and migration assay. Moreover, HU-585 demonstrated pro-apoptotic properties shown by increased levels of activated caspase-3 following treatment and a better senescence induction effect in comparison to HU-600, as demonstrated by increased activity of lysosomal ß-galactosidase. Finally, we observed that combined treatment of HU-585 with the senolytic drugs ABT-263 in vitro, and ABT-737 in vivo resulted in enhanced anti-proliferative effects and reduced neuroblastoma xenograft growth in comparison to treatment with HU-585 alone. Based on these results, we suggest that HU-585 is a pro-apoptotic and senescence-inducing compound, better than HU-600. Hence, it may be a beneficial option for the treatment of resistant neuroblastoma especially when combined with senolytic drugs that enhance its anti-tumorigenic effects.

8.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887146

RESUMO

Antibiotic-resistant Staphylococcus aureus is a major health issue that requires new therapeutic approaches. Accumulating data suggest that it is possible to sensitize these bacteria to antibiotics by combining them with inhibitors targeting efflux pumps, the low-affinity penicillin-binding protein PBP2a, cell wall teichoic acid, or the cell division protein FtsZ. We have previously shown that the endocannabinoid Anandamide (N-arachidonoylethanolamine; AEA) could sensitize drug-resistant S. aureus to a variety of antibiotics, among others, through growth arrest and inhibition of drug efflux. Here, we looked at biochemical alterations caused by AEA. We observed that AEA increased the intracellular drug concentration of a fluorescent penicillin and augmented its binding to membrane proteins with concomitant altered membrane distribution of these proteins. AEA also prevented the secretion of exopolysaccharides (EPS) and reduced the cell wall teichoic acid content, both processes known to require transporter proteins. Notably, AEA was found to inhibit membrane ATPase activity that is necessary for transmembrane transport. AEA did not affect the membrane GTPase activity, and the GTPase cell division protein FtsZ formed the Z-ring of the divisome normally in the presence of AEA. Rather, AEA caused a reduction in murein hydrolase activities involved in daughter cell separation. Altogether, this study shows that AEA affects several biochemical processes that culminate in the sensitization of the drug-resistant bacteria to antibiotics.


Assuntos
Fenômenos Bioquímicos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácidos Araquidônicos , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/metabolismo
9.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209170

RESUMO

A series of novel cannabinoid-type derivatives were synthesized by the coupling of (1S,4R)-(+) and (1R,4S)-(-)-fenchones with various resorcinols/phenols. The fenchone-resorcinol derivatives were fluorinated using Selectfluor and demethylated using sodium ethanethiolate in dimethylformamide (DMF). The absolute configurations of four compounds were determined by X-ray single crystal diffraction. The fenchone-resorcinol analogs possessed high affinity and selectivity for the CB2 cannabinoid receptor. One of the analogues synthesized, 2-(2',6'-dimethoxy-4'-(2″-methyloctan-2″-yl)phenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (1d), had a high affinity (Ki = 3.51 nM) and selectivity for the human CB2 receptor (hCB2). In the [35S]GTPγS binding assay, our lead compound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 2.59 nM, E(max) = 89.6%). Two of the fenchone derivatives were found to possess anti-inflammatory and analgesic properties. Molecular-modeling studies elucidated the binding interactions of 1d within the CB2 binding site.


Assuntos
Canfanos/química , Canfanos/farmacologia , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Desenho de Fármacos , Norbornanos/química , Norbornanos/farmacologia , Receptor CB2 de Canabinoide/química , Canfanos/síntese química , Agonistas de Receptores de Canabinoides/síntese química , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Norbornanos/síntese química , Ligação Proteica , Receptor CB2 de Canabinoide/agonistas , Análise Espectral , Relação Estrutura-Atividade
10.
Psychopharmacology (Berl) ; 239(2): 377-383, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34676441

RESUMO

RATIONALE: The fatty acid amide oleoyl glycine (OlGly) and its more stable methylated form oleoyl alanine (OlAla) reduce naloxone-precipitated morphine withdrawal (MWD)-induced conditioned gaping (nausea) responses in rats. In addition, OlGly has been shown to reduce lithium chloride (LiCl)-induced conditioned gaping in rats and vomiting in Suncus murinus (house musk shrews). OBJECTIVES: Here, we compared the potential of these fatty acid amides to maintain their anti-nausea/anti-emetic effect over a delay. The following experiments examined the potential of a wider dose range of OlGly and OlAla to interfere with (1) LiCl-induced conditioned gaping in rats and (2) LiCl-induced vomiting in shrews, when administered 20 or 70 min prior to illness. RESULTS: OlAla (1, 5, 20 mg/kg) reduced LiCl-induced conditioned gaping, with OlGly only effective at the high dose (20 mg/kg), with no effect of pretreatment delay time. At the high dose of 20 mg/kg, OlGly increased passive drips during conditioning suggesting a sedative effect. In shrews, both OlGly and OlAla (1, 5 mg/kg) suppressed LiCl-induced vomiting, with no effect of pretreatment delay. OlAla more effectively suppressed vomiting, with OlAla (5 mg/kg) also increasing the latency to the first vomiting reaction. CONCLUSIONS: OlAla was more effective than OlGly in reducing both LiCl-induced gaping in rats and LiCl-induced vomiting in shrews. These findings provide further evidence that these fatty acid amides may be useful treatments for nausea and vomiting, with OlAla demonstrating superior efficacy.


Assuntos
Cloreto de Lítio , Musaranhos , Alanina/farmacologia , Animais , Glicina/farmacologia , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Vômito/induzido quimicamente
11.
Front Pharmacol ; 12: 706703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603019

RESUMO

Rationale: The endocannabinoidome mediators, N-Oleoylglycine (OlGly) and N-Oleoylalanine (OlAla), have been shown to reduce acute naloxone-precipitated morphine withdrawal affective and somatic responses. Objectives: To determine the role and mechanism of action of OlGly and OlAla in withdrawal responses from chronic exposure to opiates in male Sprague-Dawley rats. Methods: Opiate withdrawal was produced: 1) spontaneously 24 h following chronic exposure to escalating doses of morphine over 14 days (Experiments 1 and 2) and steady-state exposure to heroin by minipumps for 12 days (Experiment 3), 2) by naloxone injection during steady-state heroin exposure (Experiment 4), 3) by naloxone injection during operant heroin self-administration (Experiment 5). Results: In Experiment 1, spontaneous morphine withdrawal produced somatic withdrawal reactions. The behavioral withdrawal reactions were accompanied by suppressed endogenous levels of OlGly in the nucleus accumbens, amygdala, and prefrontal cortex, N-Arachidonylglycerol and OlAla in the amygdala, 2-arachidonoylglycerol in the nucleus accumbens, amygdala and interoceptive insular cortex, and by changes in colonic microbiota composition. In Experiment 2, treatment with OlAla, but not OlGly, reduced spontaneous morphine withdrawal responses. In Experiment 3, OlAla attenuated spontaneous steady-state heroin withdrawal responses at both 5 and 20 mg/kg; OlGly only reduced withdrawal responses at the higher dose of 20 mg/kg. Experiment 4 demonstrated that naloxone-precipitated heroin withdrawal from steady-state exposure to heroin (7 mg/kg/day for 12 days) is accompanied by tissue-specific changes in brain or gut endocannabinoidome mediator, including OlGly and OlAla, levels and colonic microbiota composition, and that OlAla (5 mg/kg) attenuated behavioural withdrawal reactions, while also reversing some of the changes in brain and gut endocannabinoidome and gut microbiota induced by naloxone. Experiment 5 demonstrated that although OlAla (5 mg/kg) did not interfere with operant heroin self-administration on its own, it blocked naloxone-precipitated elevation of heroin self-administration behavior. Conclusion: These results suggest that OlAla and OlGly are two endogenous mediators whose brain concentrations respond to chronic opiate treatment and withdrawal concomitantly with changes in colon microbiota composition, and that OlAla may be more effective than OlGly in suppressing chronic opiate withdrawal responses.

12.
Sci Rep ; 11(1): 8690, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888802

RESUMO

Antibiotic resistance is a serious public health problem throughout the world. Overcoming methicillin and multidrug-resistant Staphylococcus aureus (MRSA/MDRSA) infections has become a challenge and there is an urgent need for new therapeutic approaches. We have previously demonstrated that the endocannabinoid Anandamide (AEA) can sensitize MRSA to antibiotics. Here we have studied the mechanism of action using a MDRSA clinical isolate that are sensitized by AEA to methicillin and norfloxacin. We found that AEA treatment halts the growth of both antibiotic-sensitive and antibiotic-resistant S. aureus. The AEA-treated bacteria become elongated and the membranes become ruffled with many protrusions. AEA treatment also leads to an increase in the percentage of bacteria having a complete septum, suggesting that the cell division is halted at this stage. The latter is supported by cell cycle analysis that shows an accumulation of bacteria in the G2/M phase after AEA treatment. We further observed that AEA causes a dose-dependent membrane depolarization that is partly relieved upon time. Nile red staining of the bacterial membranes indicates that AEA alters the membrane structures. Importantly, 4'-6-diamidino-2-phenylindole (DAPI) accumulation assay and ethidium bromide efflux (EtBr) assay unveiled that AEA leads to a dose-dependent drug accumulation by inhibiting drug efflux. In conclusion, our study demonstrates that AEA interferes with cell division, alters the membrane properties of MDRSA, and leads to increased intracellular drug retention, which can contribute to the sensitization of MDRSA to antibiotics.


Assuntos
Antibacterianos/uso terapêutico , Ácidos Araquidônicos/farmacologia , Membrana Celular/efeitos dos fármacos , Endocanabinoides/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacocinética , Ácidos Araquidônicos/farmacocinética , Farmacorresistência Bacteriana Múltipla , Endocanabinoides/farmacocinética , Alcamidas Poli-Insaturadas/farmacocinética
13.
Sci Rep ; 10(1): 13728, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792528

RESUMO

Candidiasis is a fungal infection caused by Candida species that have formed a biofilm on epithelial linings of the body. The most frequently affected areas include the vagina, oral cavity and the intestine. In severe cases, the fungi penetrate the epithelium and cause systemic infections. One approach to combat candidiasis is to prevent the adhesion of the fungal hyphae to the epithelium. Here we demonstrate that the endocannabinoid anandamide (AEA) and the endocannabinoid-like N-arachidonoyl serine (AraS) strongly prevent the adherence of C. albicans hyphae to cervical epithelial cells, while the endocannabinoid 2-arachidonoylglycerol (2-AG) has only a minor inhibitory effect. In addition, we observed that both AEA and AraS prevent the yeast-hypha transition and perturb hyphal growth. Real-time PCR analysis showed that AEA represses the expression of the HWP1 and ALS3 adhesins involved in Candida adhesion to epithelial cells and the HGC1, RAS1, EFG1 and ZAP1 regulators of hyphal morphogenesis and cell adherence. On the other hand, AEA increased the expression of NRG1, a transcriptional repressor of filamentous growth. Altogether, our data show that AEA and AraS have potential anti-fungal activities by inhibiting hyphal growth and preventing hyphal adherence to epithelial cells.


Assuntos
Ácidos Araquidônicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/prevenção & controle , Adesão Celular/efeitos dos fármacos , Colo do Útero/efeitos dos fármacos , Endocanabinoides/farmacologia , Células Epiteliais/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Linhagem Celular Tumoral , Colo do Útero/microbiologia , Células Epiteliais/microbiologia , Epitélio/efeitos dos fármacos , Epitélio/microbiologia , Feminino , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Hifas/metabolismo , Morfogênese/efeitos dos fármacos , Fatores de Transcrição
14.
Psychopharmacology (Berl) ; 237(9): 2753-2765, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556401

RESUMO

RATIONALE: Oleoyl glycine, a little studied fatty acid amide similar in structure to anandamide, interferes with nicotine addiction in mice and acute naloxone-precipitated morphine withdrawal (MWD) in rats. Because endogenous oleoyl glycine is subject to rapid enzymatic deactivation, we evaluated the potential of more stable analogs to interfere with opiate withdrawal. OBJECTIVES: The potential of monomethylated oleoyl glycine (oleoyl alanine, HU595) to interfere with somatic and aversive effects of acute naloxone-precipitated MWD, its duration, and mechanism of action was assessed in male Sprague Dawley rats. The potential of dimethylated oleoyl glycine (HU596) to interfere with the aversive effects of naloxone-precipitated MWD was also investigated. RESULTS: Oleoyl alanine (HU595) interfered with somatic and aversive effects produced by naloxone-precipitated MWD at equivalent doses (1 and 5 mg/kg, i.p.) as we have reported for oleoyl glycine; however, oleoyl alanine produced a longer lasting (60 min) interference, yet did not produce rewarding or aversive effects on its own and did not modify locomotor activity. HU596 was not effective. The interference with aversive effects of naloxone-precipitated MWD by oleoyl alanine was prevented by both a PPARα antagonist and a CB1 receptor antagonist. Accordingly, the compound was found to inhibit FAAH and activate PPARα in vitro. Finally, oleoyl alanine also reduced acute naloxone-precipitated MWD anhedonia, as measured by decreased saccharin preference. CONCLUSIONS: Oleoyl alanine (also an endogenous fatty acid) may be a more stable and effective treatment for opiate withdrawal than oleoyl glycine.


Assuntos
Alanina/uso terapêutico , Analgésicos Opioides/efeitos adversos , Glicina/análogos & derivados , Morfina/efeitos adversos , Naloxona/efeitos adversos , Ácidos Oleicos/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Alanina/análogos & derivados , Animais , Glicina/química , Glicina/uso terapêutico , Masculino , Dependência de Morfina/tratamento farmacológico , Dependência de Morfina/psicologia , Antagonistas de Entorpecentes/efeitos adversos , Ácidos Oleicos/química , Ratos , Ratos Sprague-Dawley , Recompensa , Síndrome de Abstinência a Substâncias/psicologia
15.
PLoS One ; 15(4): e0231583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294120

RESUMO

Infections caused by antibiotic-resistant strains of Staphylococcus aureus have reached epidemic proportions globally. Our previous study showed antimicrobial effects of anandamide (AEA) and arachidonoyl serine (AraS) against methicillin (MET)-resistant S. aureus (MRSA) strains, proposing the therapeutic potential of these endocannabinoid/endocannabinoid-like (EC/EC-like) agents for the treatment of MRSA. Here, we investigated the potential synergism of combinations of AEA and AraS with different types of antibiotics against MRSA grown under planktonic growth or biofilm formation. The most effective combinations under planktonic conditions were mixtures of AEA and ampicillin (AMP), and of AraS and gentamicin (GEN). The combination with the highest synergy in the biofilm formation against all tested bacterial strains was AEA and MET. Moreover, the combination of AraS and MET synergistically caused default of biofilm formation. Slime production of MRSA was also dramatically impaired by AEA or AraS combined with MET. Our data suggest the novel potential activity of combinations of EC/EC-like agents and antibiotics in the prevention of MRSA biofilm formation.


Assuntos
Antibacterianos/farmacologia , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Ampicilina/farmacologia , Ampicilina/uso terapêutico , Antibacterianos/uso terapêutico , Ácidos Araquidônicos/uso terapêutico , Biofilmes/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Endocanabinoides/uso terapêutico , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Humanos , Resistência a Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Alcamidas Poli-Insaturadas/uso terapêutico , Serina/análogos & derivados , Serina/farmacologia , Serina/uso terapêutico , Infecções Estafilocócicas/microbiologia
16.
ACS Chem Neurosci ; 11(8): 1117-1128, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32017529

RESUMO

Traumatic brain injury (TBI) is one of the main causes of death in young people for which currently no efficacious treatment exists. Recently, we have reported that mice with mild-TBI with a specific injury in the insula showed elevated levels of a little investigated N-acyl amino acid, N-oleoylglycine (OlGly). N-acyl amino acids have recently experienced an increased interest because of their important biological activities. They belong to the endocannabinoidome family of lipids with structural similarities with the endocannabinoids (eCBs). The aim of this study was to test the neuroprotective and antihyperalgesic actions of OlGly in a model of mouse mild-TBI (mTBI) and its effect on levels of eCBs and N-acylethanolamines at the end of treatment. Following mTBI, mice were administered a daily injection of OlGly (10-50-100 mg/kg i.p.) for 14 days. Treatment with OlGly normalized motor impairment and behavior in the light/dark box test, ameliorated TBI-induced thermal hyperalgesia and mechanical allodynia, and normalized aggressiveness and depression. Moreover, levels of eCBs and some N-acylethanolamines underwent significant changes 60 days after TBI, especially in the prefrontal cortex and hypothalamus, and OlGly reversed some of these changes. In conclusion, our findings reveal that OlGly ameliorates the behavioral alterations associated with mTBI in mice, while concomitantly modulating eCB and eCB-like mediator tone.


Assuntos
Concussão Encefálica/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Glicina/análogos & derivados , Ácidos Oleicos/farmacologia , Aminoácidos/metabolismo , Animais , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Glicina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Biomed Res Int ; 2020: 7258380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32076613

RESUMO

Endocannabinoid/endocannabinoid-like (EC/EC-like) are natural endogenous compounds which have been found to affect MRSA pathogenicity. Our previous studies showed that EC/EC-like was able to impair staphylococcal biofilm formation and maintenance as well as to alter biofilm-associated virulence factors. In the present study, we investigated the combinatory effect of the selected EC/EC-like with a natural antimicrobial agent, poly-L-lysine, on cariogenic bacteria Streptococcus mutans growth and biofilm formation. Among four tested EC/EC-like, only two, anandamide (AEA) and oleoylethanolamide (OEA), exhibited synergistic combinatory effect with poly-L-lysine against S. mutans. We attribute this distinct effect to differences in the fatty acid chain structure of the selected EC/EC-like compounds. Moreover, AEA exerted a specific antibiofilm mode of action against S. mutans by effecting total inhibition of biofilm formation while still allowing bacteria viability. Finally, we postulate that the presence of EC/EC-like and poly-L-lysine could enhance the permeability and efficacy of each other via hydrophobic and electrostatic interactions with the S. mutans membrane. In conclusion, we assume that a combination of endogenous natural compounds such as EC/EC-like and poly-L-lysine may benefit oral hygiene by preventing dental plaque.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Endocanabinoides/farmacologia , Polilisina/farmacologia , Streptococcus mutans/efeitos dos fármacos , Anti-Infecciosos/química , Ácidos Araquidônicos/farmacologia , Placa Dentária/prevenção & controle , Combinação de Medicamentos , Endocanabinoides/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Ácidos Oleicos/farmacologia , Polilisina/química , Alcamidas Poli-Insaturadas/farmacologia , Streptococcus mutans/crescimento & desenvolvimento
18.
Psychopharmacology (Berl) ; 237(2): 375-384, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31712968

RESUMO

RATIONALE: Acute naloxone-precipitated morphine withdrawal (MWD) produces a conditioned place aversion (CPA) in rats even after one or two exposures to high-dose (20 mg/kg, sc) morphine followed 24-h later by naloxone (1 mg/kg, sc). However, the somatic withdrawal reactions produced by acute naloxone-precipitated MWD in rats have not been investigated. A recently discovered fatty acid amide, N-oleoylglycine (OlGly), which has been suggested to act as a fatty acid amide hydrolase (FAAH) inhibitor and as a peroxisome proliferator-activated receptor alpha (PPARα) agonist, was previously shown to interfere with a naloxone-precipitated MWD-induced CPA in rats. OBJECTIVES: The aims of these studies were to examine the somatic withdrawal responses produced by acute naloxone-precipitated MWD and determine whether OlGly can also interfere with these responses. RESULTS: Here, we report that following two exposures to morphine (20 mg/kg, sc) each followed by naloxone (1 mg/kg, sc) 24 h later, rats display nausea-like somatic reactions of lying flattened on belly, abdominal contractions and diarrhea, and display increased mouthing movements and loss of body weight. OlGly (5 mg/kg, ip) interfered with naloxone-precipitated MWD-induced abdominal contractions, lying on belly, diarrhea and mouthing movements in male Sprague-Dawley rats, by both a cannabinoid 1 (CB1) and a PPARα mechanism of action. Since these withdrawal reactions are symptomatic of nausea, we evaluated the potential of OlGly to interfere with lithium chloride (LiCl)-induced and MWD-induced conditioned gaping in rats, a selective measure of nausea; the suppression of MWD-induced gaping reactions by OlGly was both CB1 and PPARα mediated. CONCLUSION: These results suggest that the aversive effects of acute naloxone-precipitated MWD reflect nausea, which is suppressed by OlGly.


Assuntos
Glicina/análogos & derivados , Morfina/efeitos adversos , Naloxona/toxicidade , Antagonistas de Entorpecentes/toxicidade , Náusea/tratamento farmacológico , Ácidos Oleicos/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Animais , Feminino , Glicina/farmacologia , Glicina/uso terapêutico , Masculino , Sintomas Inexplicáveis , Dependência de Morfina/tratamento farmacológico , Dependência de Morfina/fisiopatologia , Náusea/induzido quimicamente , Náusea/fisiopatologia , Ácidos Oleicos/farmacologia , Ratos , Ratos Sprague-Dawley , Musaranhos , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/fisiopatologia
19.
Molecules ; 24(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623098

RESUMO

Oleoyl serine (OS), an endogenous fatty acyl amide (FAA) found in bone, has been shown to have an anti-osteoporotic effect. OS, being an amide, can be hydrolyzed in the body by amidases. Hindering its amide bond by introducing adjacent substituents has been demonstrated as a successful method for prolonging its skeletal activity. Here, we tested the therapeutic efficacy of two methylated OS derivatives, oleoyl α-methyl serine (HU-671) and 2-methyl-oleoyl serine (HU-681), in an ovariectomized mouse model for osteoporosis by utilizing combined micro-computed tomography, histomorphometry, and cell culture analyses. Our findings indicate that daily treatment for 6 weeks with OS or HU-671 completely rescues bone loss, whereas HU-681 has only a partial effect. The increased bone density was primarily due to enhanced trabecular thickness and number. Moreover, the most effective dose of HU-671 was 0.5 mg/kg/day, an order of magnitude lower than with OS. The reversal of bone loss resulted from increased bone formation and decreased bone resorption, as well as reversal of bone marrow adiposity. These results were further confirmed by determining the serum levels of osteocalcin and type 1 collagen C-terminal crosslinks, as well as demonstrating the enhanced antiadipogenic effect of HU-671. Taken together, these data suggest that methylation interferes with OS's metabolism, thus enhancing its effects by extending its availability to its target cells.


Assuntos
Adiposidade/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Ácidos Oleicos/química , Osteoporose/etiologia , Osteoporose/metabolismo , Serina/análogos & derivados , Serina/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Medula Óssea/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoporose/diagnóstico , Ovariectomia/efeitos adversos , Serina/química , Microtomografia por Raio-X
20.
Psychopharmacology (Berl) ; 236(9): 2623-2633, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30993360

RESUMO

RATIONALE: Oleoyl glycine (OlGly), a recently discovered fatty acid amide that is structurally similar to N- acylethanolamines, which include the endocannabinoid, anandamide (AEA), as well as endogenous peroxisome proliferator-activated receptor alpha (PPARα) agonists oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), has been shown to interfere with nicotine reward and dependence in mice. OBJECTIVES AND METHODS: Behavioral and molecular techniques were used to investigate the ability of OlGly to interfere with the affective properties of morphine and morphine withdrawal (MWD) in male Sprague-Dawley rats. RESULTS: Synthetic OlGly (1-30 mg/kg, intraperitoneal [ip]) produced neither a place preference nor aversion on its own; however, at doses of 1 and 5 mg/kg, ip, it blocked the aversive effects of MWD in a place aversion paradigm. This effect was reversed by the cannabinoid 1 (CB1) receptor antagonist, AM251 (1 mg/kg, ip), but not the PPARα antagonist, MK886 (1 mg/kg, ip). OlGly (5 or 30 mg/kg, ip) did not interfere with a morphine-induced place preference or reinstatement of a previously extinguished morphine-induced place preference. Ex vivo analysis of tissue (nucleus accumbens, amygdala, prefrontal cortex, and interoceptive insular cortex) collected from rats experiencing naloxone-precipitated MWD revealed that OlGly was selectively elevated in the nucleus accumbens. MWD did not modify levels of the endocannabinoids 2-AG and AEA, nor those of the PPARα ligands, OEA and PEA, in any region evaluated. CONCLUSION: Here, we show that OlGly interferes with the aversive properties of acute naloxone-precipitated morphine withdrawal in rats. These results suggest that OlGly may reduce the impact of MWD and may possess efficacy in treating opiate withdrawal.


Assuntos
Analgésicos Opioides/efeitos adversos , Glicina/análogos & derivados , Morfina/efeitos adversos , Naloxona/toxicidade , Ácidos Oleicos/administração & dosagem , Recompensa , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Relação Dose-Resposta a Droga , Glicina/administração & dosagem , Glicina/metabolismo , Masculino , Camundongos , Antagonistas de Entorpecentes/toxicidade , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ácidos Oleicos/metabolismo , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA