Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Memory ; 32(7): 924-934, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972048

RESUMO

ABSTRACTDeficits in episodic memory have been reported in various psychiatric conditions, including Major Depressive Disorder (MDD). Many widely used episodic memory tests do not have the ability to distinguish between impaired memory of separate components of a real-life event (e.g., what happened, where it happened and when), and impaired binding of such real-life features. To address this issue, a naturalistic, real-world What-Where-When memory task was employed to assess the nature of episodic memory impairments in MDD. A validation study established that the task is sensitive to age-related episodic memory changes, and that intentional encoding does not invalidate the task. The main study then compared the performance of patients with depression and control participants on the intentionally encoded WWW task. Patients with MDD presented an overall episodic memory impairment arising from deficits in object memory and the ability to bind objects to temporal context. Taken together, our study confirms the episodic memory impairment in MDD, by providing evidence of deficient object memory and reduced ability to bind temporal context to objects in patients. Our naturalistic WWW task presents a promising approach for thorough identification of the nature of episodic memory impairments, under a real-world environment, in various conditions, including MDD.


Assuntos
Transtorno Depressivo Maior , Transtornos da Memória , Memória Episódica , Humanos , Transtorno Depressivo Maior/psicologia , Transtorno Depressivo Maior/complicações , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Transtornos da Memória/psicologia , Testes Neuropsicológicos , Adulto Jovem
2.
Learn Behav ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755512

RESUMO

We recently showed that food-hoarding birds use familiarity processes more than recollection processes when remembering the spatial location of their caches (Smulders et al., Animal Cognition 26:1929-1943, 2023). Pravosudov (Learning & Behavior, https://doi.org/ https://doi.org/10.3758/s13420-023-00616-x , 2023) called our findings into question, claiming that our method is unable to distinguish between recollection and familiarity, and that associative learning tasks are a better way to study the memory for cache sites. In this response, we argue that our methods would have been more likely to detect recollection than familiarity, if Pravosudov's assertions were correct. We also point out that associative learning mechanisms may be good for building semantic knowledge, but are incompatible with the needs of cache site memory, which requires the unique encoding of caching events.

3.
Horm Behav ; 157: 105451, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977022

RESUMO

Although the hippocampus is one of the most-studied brain regions in mammals, research on the avian hippocampus has been more limited in scope. It is generally agreed that the hippocampus is an ancient feature of the amniote brain, and therefore homologous between the two lineages. Because birds and mammals are evolutionarily not very closely related, any shared anatomy is likely to be crucial for shared functions of their hippocampi. These functions, in turn, are likely to be essential if they have been conserved for over 300 million years. Therefore, research on the avian hippocampus can help us understand how this brain region evolved and how it has changed over evolutionary time. Further, there is a strong research foundation in birds on hippocampal-supported behaviors such as spatial navigation, food caching, and brood parasitism that scientists can build upon to better understand how hippocampal anatomy, network circuitry, endocrinology, and physiology can help control these behaviors. In this review, we summarize our current understanding of the avian hippocampus in spatial cognition as well as in regulating anxiety, approach-avoidance behavior, and stress responses. Although there are still some questions about the exact number of subdivisions in the avian hippocampus and how that might vary in different avian families, there is intriguing evidence that the avian hippocampus might have complementary functional profiles along the rostral-caudal axis similar to the dorsal-ventral axis of the rodent hippocampus, where the rostral/dorsal hippocampus is more involved in cognitive processes like spatial learning and the caudal/ventral hippocampus regulates emotional states, anxiety, and the stress response. Future research should focus on elucidating the cellular and molecular mechanisms - including endocrinological - in the avian hippocampus that underlie behaviors such as spatial navigation, spatial memory, and anxiety-related behaviors, and in so doing, resolve outstanding questions about avian hippocampal function and organization.


Assuntos
Encéfalo , Mamíferos , Humanos , Animais , Mamíferos/fisiologia , Cognição/fisiologia , Sistemas Neurossecretores , Hipocampo/fisiologia
4.
Anim Cogn ; 26(6): 1929-1943, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37865619

RESUMO

Scatter-hoarding birds find their caches using spatial memory and have an enlarged hippocampus. Finding a cache site could be achieved using either Recollection (a discrete recalling of previously experienced information) or Familiarity (a feeling of "having encountered something before"). In humans, these two processes can be distinguished using receiver operating characteristic (ROC) curves. ROC curves for olfactory memory in rats have shown the hippocampus is involved in Recollection, but not Familiarity. We test the hypothesis that food-hoarding birds, having a larger hippocampus, primarily use Recollection to find their caches. We validate a novel method of constructing ROC curves in humans and apply this method to cache retrieval by coal tits (Periparus ater). Both humans and birds mainly use Familiarity in finding their caches, with lower contribution of Recollection. This contribution is not significantly different from chance in birds, but a small contribution cannot be ruled out. Memory performance decreases with increasing retention interval in birds. The ecology of food-hoarding Parids makes it plausible that they mainly use Familiarity in the memory for caches. The larger hippocampus could be related to associating cache contents and temporal context with cache locations, rather than Recollection of the spatial information itself.


Assuntos
Colecionismo , Passeriformes , Aves Canoras , Animais , Comportamento Alimentar , Rememoração Mental , Reconhecimento Psicológico
5.
Learn Behav ; 50(1): 113-124, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34382140

RESUMO

The hippocampal formation (HF) processes spatial memories for cache locations in food-hoarding birds. Hoarding is a seasonal behavior, and seasonal changes in the HF have been described in some studies, but not in others. One potential reason is that birds may have been sampled during the seasonal hoarding peak in some studies, but not in others. In this study, we investigate the seasonal changes in hoarding and HF in willow tits (Poecile montanus). We compare this to seasonal changes in HF in a closely related non-hoarding bird, the great tit (Parus major). Willow tits near Oulu, Finland, show a seasonal hoarding peak in September and both HF volume and neuron number show a similar peak. HF neuronal density also increases in September, but then remains the same throughout winter. Unexpectedly, the great tit HF also changes seasonally, although in a different pattern: the great tit telencephalon increases in volume from July to August and decreases again in November. Great tit HF volume follows suit, but with a delay. Great tit HF neuron number and density also increase from August to September and stay high throughout winter. We hypothesize that seasonal changes in hoarding birds' HF are driven by food-hoarding experience (e.g., the formation of thousands of memories). The seasonal changes in great tit brains may also be due to experience-dependent plasticity, responding to changes in the social and spatial environment. Large-scale experience-dependent neural plasticity is therefore probably not an adaptation of food-hoarding birds, but a general property of the avian HF and telencephalon.


Assuntos
Colecionismo , Aves Canoras , Animais , Comportamento Alimentar/fisiologia , Hipocampo/fisiologia , Estações do Ano
6.
Neurobiol Stress ; 15: 100351, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34189191

RESUMO

The hypothalamo-pituitary-adrenal (HPA) axis is one of the major output systems of the vertebrate stress response. It controls the release of cortisol or corticosterone from the adrenal gland. These hormones regulate a range of processes throughout the brain and body, with the main function of mobilizing energy reserves to improve coping with a stressful situation. This axis is regulated in response to both physical (e.g., osmotic) and psychological (e.g., social) stressors. In mammals, the telencephalon plays an important role in the regulation of the HPA axis response in particular to psychological stressors, with the amygdala and part of prefrontal cortex stimulating the stress response, and the hippocampus and another part of prefrontal cortex inhibiting the response to return it to baseline. Birds also mount HPA axis responses to psychological stressors, but much less is known about the telencephalic areas that control this response. This review summarizes which telencephalic areas in birds are connected to the HPA axis and are known to respond to stressful situations. The conclusion is that the telencephalic control of the HPA axis is probably an ancient system that dates from before the split between sauropsid and synapsid reptiles, but more research is needed into the functional relationships between the brain areas reviewed in birds if we want to understand the level of this conservation.

7.
Front Vet Sci ; 7: 587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005647

RESUMO

Access to outdoor areas is provided as a means of enhancing welfare in commercial systems for laying hens (Gallus gallus domesticus), but substantial individual differences exist in their proportional use. Baseline cell proliferation levels of Adult Hippocampal Neurogenesis (AHN) have been associated with individual differences in reactive vs. proactive coping style, and in both mammals and birds, AHN is upregulated by positive experiences including environmental enrichment and exercise. We thus sought to explore whether individual differences in use of outdoor areas and in tonic immobility responses (indicative of fearfulness) were associated with hippocampal cell proliferation and neuronal differentiation. Radio frequency identification technology was used to track the ranging behavior of 440 individual focal hens within a commercially-relevant system over a 72-days period, after which tonic immobility durations were measured. Following hippocampal tissue collection from 58 focal hens, proliferation and neuronal differentiation were measured through quantitative PCR for proliferating cell nuclear antigen (PCNA) and doublecortin mRNA, respectively. Individual differences in tonic immobility duration positively correlated with PCNA expression over the whole hippocampal formation, while greater time spent in outdoor areas (the grassy range and stone yard) was associated with higher proliferation in the rostral subregion. Basal proliferation in the chicken hippocampal formation may thus relate to reactivity, while levels in the rostral region may be stimulated by ranging experience. Doublecortin expression in the caudal hippocampus negatively co-varied with time on the grassy range, but was not associated with tonic immobility duration. This suggests that ranging outside may be associated with stress. Within laying hen flocks, individual differences in hippocampal plasticity thus relate to coping style and use of external areas.

8.
Sci Rep ; 10(1): 14562, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884048

RESUMO

Millions of mice are used every year for scientific research, representing the majority of scientific procedures conducted on animals. The standard method used to pick up laboratory mice for general husbandry and experimental procedures is known as tail handling and involves the capture, elevation and restraint of mice via their tails. There is growing evidence that, compared to non-aversive handling methods (i.e. tunnel and cup), tail handling increases behavioural signs of anxiety and induces anhedonia. Hence tail handling has a negative impact on mouse welfare. Here, we investigated whether repeated scruff restraint, intraperitoneal (IP) injections and anaesthesia negated the reduction in anxiety-related behaviour in tunnel compared with tail handled BALB/c mice. We found that mice which experienced repeated restraint spent less time interacting with a handler compared to mice that were handled only. However, after repeated restraint, tunnel handled mice showed increased willingness to interact with a handler, and reduced anxiety in standard behavioural tests compared with tail handled mice. The type of procedure experienced (IP injection or anaesthesia), and the duration after which behaviour was measured after a procedure affected the willingness of mice to interact with a handler. Despite this, compared with tail handling, tunnel handling reduced anxiety in standard behavioural tests and increased willingness to interact with a handler within hours after procedures. This suggests that the welfare benefits of tunnel handling are widely applicable and not diminished by the use of other putatively more invasive procedures that are frequently used in the laboratory. Therefore, the simple refinement of replacing tail with tunnel handling for routine husbandry and procedures will deliver a substantial improvement for mouse welfare and has the potential for improving scientific outcomes.


Assuntos
Anestesia/métodos , Comportamento Animal , Manobra Psicológica , Injeções/métodos , Restrição Física/métodos , Criação de Animais Domésticos , Bem-Estar do Animal , Animais , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos BALB C
9.
PLoS One ; 15(4): e0231454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32287297

RESUMO

Handling of laboratory mice is essential for experiments and husbandry, but handling can increase anxiety in mice, compromising their welfare and potentially reducing replicability between studies. The use of non-aversive handling (e.g., tunnel handling or cupping), rather than the standard method of picking mice up by the tail, has been shown to enhance interaction with a handler, reduce anxiety-like behaviours, and increase exploration and performance in standard behavioural tests. Despite this, some labs continue to use tail handling for routine husbandry, and the extent to which non-aversive methods are being used is currently unknown. Here we conducted an international online survey targeting individuals that work with and/or conduct research using laboratory mice. The survey aimed to identify the handling methods currently being used, and to determine common obstacles that may be preventing the wider uptake of non-aversive handling. We also surveyed opinions concerning the current data in support of non-aversive handling for mouse welfare and scientific outcomes. 390 complete responses were received and analysed quantitatively and thematically. We found that 35% report using tail handling only, and 43% use a combination of tail and non-aversive methods. 18% of respondents reported exclusively using non-aversive methods. The vast majority of participants were convinced that non-aversive handling improves animal welfare and scientific outcomes. However, the survey indicated that researchers were significantly less likely to have heard of non-aversive handling and more likely to use tail handling compared with animal care staff. Thematic analysis revealed there were concerns regarding the time required for non-aversive methods compared with tail handling, and that there was a perceived incompatibility of tunnel handling with restraint, health checks and other routine procedures. Respondents also highlighted a need for additional research into the impact of handling method that is representative of experimental protocols and physiological indicators used in the biomedical fields. This survey highlights where targeted research, outreach, training and funding may have the greatest impact on increasing uptake of non-aversive handling methods for laboratory mice.


Assuntos
Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/tendências , Adolescente , Adulto , Idoso , Criação de Animais Domésticos/ética , Bem-Estar do Animal/tendências , Animais , Comportamento Animal , Feminino , Manobra Psicológica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Pesquisadores , Inquéritos e Questionários
10.
Behav Brain Sci ; 42: e51, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30940279

RESUMO

Anselme & Güntürkün propose a novel mechanism to explain the increase in foraging motivation when experiencing an unpredictable food supply. However, the physiological mechanisms that maintain energy homeostasis already control foraging intensity in response to changes in energy balance. Therefore, unpredictability may just be one of many factors that feeds into the same dopaminergic "wanting" system to control foraging intensity.


Assuntos
Metabolismo Energético , Motivação , Incerteza
11.
Neurosci Biobehav Rev ; 101: 113-121, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30951763

RESUMO

Progress in improving the welfare of captive animals has been hindered by a lack of objective indicators to assess the quality of lifetime experience, often called cumulative affective experience. Recent developments in stress biology and psychiatry have shed new light on the role of the mammalian hippocampus in affective processes. Here we review these findings and argue that structural hippocampal biomarkers demonstrate criterion, construct and content validity as indicators of cumulative affective experience in mammals. We also briefly review emerging findings in birds and fish, which have promising implications for applying the hippocampal approach to these taxa, but require further validation. We hope that this review will motivate welfare researchers and neuroscientists to explore the potential of hippocampal biomarkers of cumulative affective experience.


Assuntos
Afeto/fisiologia , Bem-Estar do Animal , Hipocampo/fisiologia , Estresse Psicológico , Animais , Biomarcadores/análise , Humanos , Neurogênese , Plasticidade Neuronal , Neurônios/fisiologia
12.
Learn Behav ; 47(4): 275-276, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-29992421

RESUMO

Wild Australian magpies living (or growing up) in larger social groups take fewer trials to solve a battery of four cognitive tests than those living (or growing up) in smaller groups. The tests all draw on a common underlying factor, but is this factor cognitive or motivational?


Assuntos
Cognição , Animais , Austrália
13.
Proc Biol Sci ; 285(1879)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29794047

RESUMO

In birds little is known about the hormonal signals that communicate nutritional state to the brain and regulate appetitive behaviours. In mammals, the peptide hormones ghrelin and leptin elevate and inhibit consumption and food hoarding, respectively. But in birds, administration of both ghrelin and leptin inhibit food consumption. The role of these hormones in the regulation of food hoarding in avian species has not been examined. To investigate this, we injected wild caught coal tits (Periparus ater) with leptin, high-dose ghrelin, low-dose ghrelin and a saline control in the laboratory. We then measured food hoarding and mass gain, as a proxy of food consumption, every 20 min for 2 h post-injection. Both high-dose ghrelin and leptin injections significantly reduced hoarding and mass gain compared with controls. Our results provide the first evidence that hoarding behaviour can be reduced by both leptin and ghrelin in a wild bird. These findings add to evidence that the hormonal control of food consumption and hoarding in avian species differs from that in mammals. Food hoarding and consumptive behaviours consistently show the same response to peripheral signals of nutritional state, suggesting that the hormonal regulation of food hoarding has evolved from the consumption regulatory system.


Assuntos
Ingestão de Alimentos , Grelina/farmacologia , Leptina/farmacologia , Aves Canoras/fisiologia , Aumento de Peso , Animais , Comportamento Apetitivo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Grelina/administração & dosagem , Injeções Intramusculares/veterinária , Leptina/administração & dosagem , Músculos Peitorais , Aumento de Peso/efeitos dos fármacos
14.
Eur J Neurosci ; 48(8): 2807-2815, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29120510

RESUMO

Avian and mammalian brains have evolved independently from each other for about 300 million years. During that time, the hippocampal formation (HF) has diverged in morphology and cytoarchitecture, but seems to have conserved much of its function. It is therefore an open question how seemingly different neural organizations can generate the same function. A prominent feature of the mammalian hippocampus is that it generates different neural oscillations, including the gamma rhythm, which plays an important role in memory processing. In this study, we investigate whether the avian hippocampus also generates gamma oscillations, and whether similar pharmacological mechanisms are involved in this function. We investigated the existence of gamma oscillations in avian HF using in vitro electrophysiology in P0-P12 domestic chick (Gallus gallus domesticus) HF brain slices. Persistent gamma frequency oscillations were induced by the bath application of the cholinergic agonist carbachol, but not by kainate, a glutamate receptor agonist. Similar to other species, carbachol-evoked gamma oscillations were sensitive to GABAA , AMPA/kainate and muscarinic (M1) receptor antagonism. Therefore, similar to mammalian species, muscarinic receptor-activated avian HF gamma oscillations may arise via a pyramidal-interneuron gamma (PING)-based mechanism. Gamma oscillations are most prominent in the ventromedial area of the hippocampal slices, and gamma power is reduced more laterally and dorsally in the HF. We conclude that similar micro-circuitry may exist in the avian and mammalian hippocampal formation, and this is likely to relate to the shared function of the two structures.


Assuntos
Ritmo Gama/fisiologia , Hipocampo/fisiologia , Animais , Animais Recém-Nascidos , Carbacol/farmacologia , Galinhas , Agonistas Colinérgicos/farmacologia , Feminino , Ritmo Gama/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Antagonistas Muscarínicos/farmacologia , Técnicas de Cultura de Órgãos
15.
PLoS One ; 12(12): e0189158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211774

RESUMO

The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7-12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis) in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the hypothesis that the response to stressors in the avian hippocampal formation is homologous to that of the mammalian hippocampus.


Assuntos
Ingestão de Energia , Hipocampo/crescimento & desenvolvimento , Neurogênese , Glândulas Suprarrenais/fisiologia , Animais , Galinhas , Corticosterona/sangue , Feminino , Sistema Hipotálamo-Hipofisário
16.
Front Neurosci ; 11: 488, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966570

RESUMO

Adult hippocampal neurogenesis (AHN) in the dentate gyrus is known to respond to environmental enrichment, chronic stress, and many other factors. The function of AHN may vary across the septo-temporal axis of the hippocampus, as different subdivisions are responsible for different functions. The dorsal pole regulates cognitive-related behaviors, while the ventral pole mediates mood-related responses through the hypothalamic-pituitary-adrenal (HPA) axis. In this study, we investigate different methods of quantifying the effect of environmental enrichment on AHN in the dorsal and ventral parts of the dentate gyrus (dDG and vDG). To this purpose, 11-week-old female CD-1 mice were assigned for 8 days to one of two conditions: the Environmental Enrichment (E) group received (i) running wheels, (ii) larger cages, (iii) plastic tunnels, and (iv) bedding with male urine, while the Control (C) group received standard housing. Dorsal CA (Cornu Ammonis) and DG regions were larger in the E than the C animals. Distance run linearly predicted the volume of the dorsal hippocampus, as well as of the intermediate and ventral CA regions. In the dDG, the amount of Doublecortin (DCX) immunoreactivity was significantly higher in E than in C mice. Surprisingly, this pattern was the opposite in the vDG (C > E). Real-time PCR measurement of Dcx mRNA and DCX protein analysis using ELISA showed the same pattern. Brain Derived Neurotrophic Factor (BDNF) immunoreactivity and mRNA displayed no difference between E and C, suggesting that upregulation of DCX was not caused by changes in BDNF levels. BDNF levels were higher in vDG than in dDG, as measured by both methods. Bdnf expression in vDG correlated positively with the distance run by individual E mice. The similarity in the patterns of immunoreactivity, mRNA and protein for differential DCX expression and for BDNF distribution suggests that the latter two methods might be effective tools for more rapid quantification of AHN.

18.
Brain Behav Evol ; 90(1): 81-91, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28866683

RESUMO

Though widely studied for its function in memory and navigation, the hippocampal formation (HF) in mammals also plays an important role in regulating the stress response. If this is an ancestral feature of the hippocampus, then it is likely that the avian HF plays a similar role. Indeed, the avian HF strongly expresses both mineralocorticoid and glucocorticoid receptors, and has indirect projections to the paraventricular nucleus of the hypothalamus, which controls the hypothalamic-pituitary-adrenal (HPA) axis. Hippocampal lesions increase HPA activity, while electrical stimulation suppresses it. In addition, adult hippocampal neurogenesis in birds is reduced in response to different acute and chronic stressors, as it is in mammals. Because the mammalian hippocampus is functionally specialized along its septotemporal axis, with the temporal pole playing a more important role in the stress response, the hypothesis is put forward that a similar functional specialization exists in birds along the rostrocaudal hippocampal axis. Some, though not all, of the evidence supports a rostrocaudal functional gradient. The evidence for whether this is equivalent to the mammalian septotemporal organization is currently ambiguous at best and needs to be more extensively investigated.


Assuntos
Aves/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
19.
J Vis Exp ; (123)2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28570533

RESUMO

Episodic memory is a complex memory system which allows recall and mental re-experience of previous episodes from one's own life. Real-life episodic memories are about events in their spatiotemporal context and are typically visuospatial, rather than verbal. Yet often, tests of episodic memory use verbal material to be recalled (word lists, stories). The Real-World What-Where-When memory test requires participants to hide a total of 16 different objects in 16 different locations over two temporal occasions, 2 h apart. Another two hours later, they are then asked to recall which objects (What) they had hidden in which locations (Where) and on which of the two occasions (When). In addition to counting the number of correctly recalled complete what-where-when combinations, this task can also be used to test real-world spatial memory and object memory. This task is sensitive to normal cognitive aging, and correlates well with performance on other episodic memory tasks, while at the same time providing more ecological validity and being cheap and easy to run.


Assuntos
Testes de Memória e Aprendizagem , Envelhecimento/psicologia , Humanos , Memória
20.
Psychoneuroendocrinology ; 79: 9-12, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242416

RESUMO

This paper investigates the relationship between organizational effects of pre-natal testosterone and the use of "tomboy" as a descriptor for young women. We show in a sample of 44 women that a woman's right hand 2D:4D ratio is a significant predictor of whether they will be labeled as a "tomboy", with a decrease in 2D:4D ratio corresponding to an increase in the probability of being called "tomboy". Taking the right hand 2D:4D ratio as a proxy for the abundance of testosterone in the early life hormonal milieu, we propose that organizing effects of higher pre-natal T lead to increased masculine-typical behavior in childhood, which increases the likelihood some women will be referred to as tomboys. We suggest that the increase in masculine-typical behaviors is a result of how the organizing effects of T on the brain interact with children's social modeling of male-coded and female-coded behaviors.


Assuntos
Dedos/anatomia & histologia , Identidade de Gênero , Adolescente , Adulto , Idoso , Antropometria , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA