Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Schizophr Res ; 274: 129-136, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39293250

RESUMO

In a previous study on ionotropic glutamate receptors, we have shown that [3H]kainate, but not [3H]AMPA or [3H]NMDA, receptor binding was lower in Brodmann's area (BA) 9 from people with schizophrenia. Subsequently, we defined a subgroup within the syndrome of schizophrenia who are termed the Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS) as they have markedly lower levels of [3H]pirenzepine binding to the muscarinic M1 receptor. The previous glutamate receptor study did not contain enough people with MRDS and other forms of schizophrenia (non-MRDS) to study any subgroup-specific differences. Hence, in this study we first measured [3H]pirenzepine binding to the muscarinic M1 receptor to confirm the MRDS subgroup, then measured [3H]kainate, [3H]AMPA and [3H]NMDA receptor binding using autoradiography in BA 9 from people with MRDS, non-MRDS and controls. We also measured binding in BA 10 as our gene expression study indicated that BA 10 is disproportionally affected by the molecular pathology of schizophrenia. As expected, due to case-selection criteria, [3H]pirenzepine binding to the M1 receptor was lower in BA 9 and BA 10 from people with MRDS, although more profound in BA 10. [3H]kainate receptor binding was lower only in BA 9 from people with MRDS, while [3H]AMPA and [3H]NMDA receptor binding was not altered in either region. Muscarinic M1 receptors and kainate receptors are both located on glutamatergic pyramidal neurons so a perturbation in both receptors could indicate altered excitatory neurotransmission in BA 9 from people with MRDS.

2.
Psychiatry Res ; 341: 116156, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39236366

RESUMO

We are studying the molecular pathology of a sub-group within schizophrenia (∼ 25 %: termed Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS)) who can be separated because they have very low levels of cortical muscarinic M1 receptors (CHRM1). Based on our transcriptomic data from Brodmann's area ((BA) 9, 10 and 33 (controls, schizophrenia and mood disorders) and the cortex of the CHRM1-/- mouse (a molecular model of aberrant CHRM1 signaling), we predicted levels of AKT interacting protein (AKTIP), but not tubulin alpha 1b (TUBA1B) or AKT serine/threonine kinase 1 (AKT1) and pyruvate dehydrogenase kinase 1 (PDK1) (two AKTIP-functionally associated proteins), would be changed in MRDS. Hence, we used Western blotting to measure AKTIP (BA 10: controls, schizophrenia and mood disorders; BA 9: controls and schizophrenia) plus TUBA1B, AKT1 and PDK1 (BA 10: controls and schizophrenia) proteins. The only significant change with diagnosis was higher levels of AKTIP protein in BA 10 (Cohen's d = 0.73; p = 0.02) in schizophrenia compared to controls due to higher levels of AKTIP only in people with MRDS (Cohen's d = 0.80; p = 0.03). As AKTIP is involved in AKT1 signaling, our data suggests that signaling pathway is particularly disturbed in BA 10 in MRDS.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Receptor Muscarínico M1 , Esquizofrenia , Esquizofrenia/metabolismo , Humanos , Masculino , Feminino , Adulto , Receptor Muscarínico M1/metabolismo , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lobo Frontal/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Animais , Camundongos , Tubulina (Proteína)/metabolismo , Camundongos Knockout
3.
Methods Mol Biol ; 2687: 1-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464158

RESUMO

This chapter outlines some of the general principles that need to be considered when developing a radioligand binding assay to measure the affinity and density of radioligand binding to a receptor in tissue or on cells. In addition it describes an innovative step forward in using radioligand binding assays to measure levels of muscarinic M1 receptors in human postmortem CNS, using both membrane binding and in situ radioligand binding. These examples show how, using receptor-specific allosteric modulators, it is possible to gain an estimate of the density of a single receptor using a radioligand that is not totally specific to the target site of interest. Given there is a growing understanding that there are problems with antibodies not showing specificity to their supposed target protein, well-characterized radioligand binding techniques still provide an important tool when studying receptor density in tissues and cells.


Assuntos
Receptor Muscarínico M1 , Humanos , Receptor Muscarínico M1/metabolismo , Regulação Alostérica , Ensaio Radioligante , Membranas/metabolismo
4.
Psychiatry Res ; 317: 114850, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174274

RESUMO

Different regions of the cortex have been implicated in the pathophysiology of schizophrenia. Recently published data suggested there are many more changes in gene expression in the frontal pole (Brodmann's Area (BA) 10) compared to the dorsolateral prefrontal cortex (BA 9) and the anterior cingulate cortex (BA 33) from patients with schizophrenia. These data argued that the frontal pole is significantly affected by the pathophysiology of schizophrenia. The frontal pole is a region necessary for higher cognitive functions and is highly interconnected with many other brain regions. In this review we summarise the growing body of evidence to support the hypothesis that a dysfunctional frontal pole, due at least in part to its widespread effects on brain function, is making an important contribution to the pathophysiology of schizophrenia. We detail the many structural, cellular and molecular abnormalities in the frontal pole from people with schizophrenia and present findings that argue the symptoms of schizophrenia are closely linked to dysfunction in this critical brain region.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Lobo Frontal , Córtex Pré-Frontal , Encéfalo , Giro do Cíngulo , Imageamento por Ressonância Magnética
5.
Psychiatry Res ; 303: 114096, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34274903

RESUMO

Our transcriptomic study suggested there were markedly lower levels of tubulin alpha 1b (TUBA1B) expression in BA 10, but not BA 9, from patients with schizophrenia. We now use Western blotting to compare levels of TUBA1B protein in BA 9 and 10 from patients with schizophrenia and BA 10 from patients with mood disorders to controls as well as in the frontal cortex from rats after treatment with haloperidol, chlorpromazine or vehicle for 28 days. Levels of TUBA1B were significantly lower (- 18.6%) in BA 10, but not BA 9, from patients with schizophrenia. Levels of TUBA1B did not differ significantly from controls in BA 10 from patients with mood disorders or in the cortex of rats after antipsychotic drug treatments. Levels of TUBA1B were significantly lower (- 30%) in BA 10 from patients with schizophrenia who were not being treated with antipsychotic drugs close to death compared to those who were treated close to death. These data suggest that lower levels of TUBA1B, a cytoskeletal protein, in BA 10 from patients with schizophrenia are not a simple drug effect and therefore add to the hypothesis that a breakdown in cytoskeletal homoeostasis may be contributing to the genesis of the symptoms of the disorder.


Assuntos
Antipsicóticos , Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Animais , Antipsicóticos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Lobo Frontal , Humanos , Ratos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA