Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
PLoS One ; 19(10): e0306579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39378198

RESUMO

The G protein-coupled receptor 40 (GPR40) is known to exert a significant influence on neurogenesis and neurodevelopment within the central nervous system of both humans and rodents. Research findings indicate that the activation of GPR40 by an agonist has been observed to promote the proliferation and viability of hypothalamus cells in the human body. The objective of the present study is to discover new agonist compounds for the GPR40 protein through the utilization of machine learning and pharmacophore-based screening techniques, in conjunction with other computational methodologies such as docking, molecular dynamics simulations, free energy calculations, and investigations of the free energy landscape. In the course of our investigation, we successfully identified five unreported agonist compounds that exhibit robust docking score, displayed stability in ligand RMSD and consistent hydrogen bonding with the receptor in the MD trajectories. Free energy calculations were observed to be higher than control molecule. The measured binding affinities of compounds namely 1, 3, 4, 6 and 10 were -13.9, -13.5, -13.4, -12.9, and -12.1 Kcal/mol, respectively. The identified molecular agonist that has been found can be assessed in terms of its therapeutic efficacy in the treatment of neurological diseases.


Assuntos
Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doenças Neurodegenerativas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Ligantes , Termodinâmica , Ligação Proteica
2.
Front Microbiol ; 15: 1421143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135876

RESUMO

Background: Rumex vesicarius is a wild leafy plant belonging to the family Polygonaceae, renowned for its therapeutic benefits. The genus Rumex comprises approximately 150 species distributed globally. Objective: The study aimed to investigate the biological activities of R. vesicarius using in vitro and in silico methods. Methods: Rumex vesicarius was collected from the mountains in Hail and extracted with methanol. The phytochemical composition was qualitatively determined using colorimetric detection methods. Additional analyses included elemental analysis, in silico docking, antioxidant, antibacterial, and anti-biofilm properties. Results: The extract contained various classes of phytochemicals, including flavonoids, phenolics, tannins, terpenes, and saponins. Sixteen constituents were identified through molecular docking, revealing inhibition against the filamentous temperature-sensitive protein Z (FtsZ), a crucial factor in bacterial cell division. Six compounds exhibited low binding scores ranging from -8.3 to -5.0 kcal/mol, indicating efficient interaction at the active site. Elemental analysis identified 15 elements, with potassium being the most abundant, followed by calcium, aluminum, silicon, iron, phosphorus, sulfur, magnesium, titanium, strontium, zinc, manganese, bromine, and chromium. Antioxidant analysis revealed significant properties at lower concentrations compared to ascorbic acid, butylated hydroxytoluene, and ß-carotene. Antibacterial analysis demonstrated inhibitory effects on Bacillus subtilis MTCC121 and Pseudomonas aeruginosa MTCC 741, with inhibition zones of 13.67 ± 1.0 mm and 11.50 ± 1.0 mm, respectively. The MIC and MBC values ranged from 250 to 500 µg/mL. R. vesicarius also exhibited anti-biofilm activity. Conclusion: Wild-grown R. vesicarius from the mountains of Hail is rich in bioactive phytochemicals and essential minerals, exhibiting notable antioxidant and antibacterial properties.

3.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-39049485

RESUMO

Knowledge of genetic variability within and among types and breeds of dromedary (Camelus dromedarius L.) can be a valuable asset in selective breeding of desirable characteristics and will shed light on their origin, dynamics of domestication, and dispersion. Variability in an 809 bp segment of the mtDNA genome was measured within and among dromedaries from eight indigenous and one exogenous breed from Ha'il in north-central Saudi Arabia. Sixteen mtDNA haplotypes were identified among 47 camels. Haplotypic diversity among breeds is high (Hd = 0.817); most of the AMOVA variance (55.05%) occurs within breeds. Phylogenetic comparison of these haplotypes with those obtained across their geographic range showed that most haplotypes were placed within the same cluster with ancient wild dromedaries and the two newly identified haplotypes in this study. The most prevalent haplotypes found in dromedaries from this area appear to be ancestral to most other dromedaries and differ from each other by only one SNP. These results support the hypothesis that the Arabian Peninsula is a hub of diversification for dromedaries.


Assuntos
Camelus , DNA Mitocondrial , Variação Genética , Haplótipos , Filogenia , Animais , Camelus/genética , Camelus/classificação , Arábia Saudita , DNA Mitocondrial/genética , Polimorfismo de Nucleotídeo Único , Cruzamento
4.
Fitoterapia ; 177: 106047, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38838824

RESUMO

This study determined chemical profiles, antibacterial and antibiofilm activities of the essential oils (EOs) obtained by A. visnaga aerial parts and F. vulgare fruits. Butanoic acid, 2-methyl-, 3-methylbutyl ester (38.8%), linalyl propionate (34.7%) and limonene (8.5%) resulted as main constituents of A. visnaga EO. In F. vulgare EO trans-anethole (76.9%) and fenchone (14.1%) resulted as main components. The two EOs were active against five bacterial strains (Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus) at different degrees. The MIC values ranged from 5 ± 2 to 10 ± 2 µL/mL except for S. aureus (MIC >20 µL/mL). EOs exhibited inhibitory effect on the formation of biofilm up to 53.56 and 48.04% against E. coli and A. baumannii, respectively and activity against bacterial metabolism against A. baumannii and E. coli, with biofilm-inhibition ranging from 61.73 to 73.55%. The binding affinity of the identified components was estimated by docking them into the binding site of S. aureus gyrase (PDB code 2XCT) and S. aureus tyrosyl-tRNA synthetase (PDB code 1JIJ). trans-Anethole and butanoic acid, 2-methyl-, 3-methylbutyl ester showed relatively moderate binding interactions with the amino acid residues of S. aureus tyrosyl-tRNA synthetase. In addition, almost all predicted compounds possess good pharmacokinetic properties with no toxicity, being inactive for cytotoxicity, carcinogenicity, hepatotoxicity, mutagenicity and immunotoxicity parameters. The results encourage the use of these EOs as natural antibacterial agents in food and pharmaceutical industries.


Assuntos
Derivados de Alilbenzenos , Antibacterianos , Biofilmes , Foeniculum , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Óleos Voláteis , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Foeniculum/química , Myrtaceae/química , Frutas/química , Anisóis/farmacologia , Anisóis/química , Anisóis/isolamento & purificação , Componentes Aéreos da Planta/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Canfanos , Norbornanos
5.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 48-58, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814235

RESUMO

Probiotics have been used successfully in aquaculture to enhance disease resistance, nutrition, and/or growth of cultured organisms. Six strains of Bacillus were isolated from the intestinal tracts of fish and recognised by conventional biochemical traits. The six isolated strains were Bacillus cereus and Bacillus subtilis using MALDI-TOF-MS technique. The probiotic properties of these Bacillus strains were studied. The tested bacillus strains exhibit antibacterial activity against the different pathogens. The strain S5 gave the important inhibition zones against most pathogens (20.5, 20.33, 23, and 21 mm against Vibrio alginolyticus, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella typhimurium, respectively). According to our results, all Bacillus strains have extracellular components that can stop pathogenic bacteria from growing. The enzymatic characterization showed that the tested strains can produce several biotechnological enzymes such as α-glucosidase, naphtol-AS-BI-Phosphohydrolase, esterase lipase, acid phosphatase, alkaline phosphatase, amylase, lipase, caseinase, and lecithinase. All Bacillus strains were adhesive to polystyrene. The adding Bacillus strains to the Artemia culture exerted significantly greater effects on the survival of Artemia. The challenge test on Artemia culture showed that the protection against pathogenic Vibrio was improved. These findings allow us to recommend the examined strains as prospective probiotic options for the Artemia culture, which will be used as food additives to improve the culture conditions of crustacean larvae and marine fish.


Assuntos
Artemia , Bacillus , Peixes , Trato Gastrointestinal , Probióticos , Animais , Probióticos/farmacologia , Artemia/microbiologia , Bacillus/enzimologia , Bacillus/isolamento & purificação , Trato Gastrointestinal/microbiologia , Peixes/microbiologia , Vibrio/patogenicidade , Vibrio/efeitos dos fármacos , Antibacterianos/farmacologia , Antibiose
6.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 59-68, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814234

RESUMO

Development of novel functional foods is trending as one of the hot topics in food science and food/beverage industries. In the present study, the anti-diabetic, anti-hyperlipidemic and histo-protective effects of the extra virgin olive oil (EVOO) enriched with the organosulfur diallyl sulfide (DAS) (DAS-rich EVOO) were evaluated in alloxan-induced diabetic mice. The ingestion of EVOO (500µL daily for two weeks) attenuated alloxan-induced elevated glucose, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase, lactate dehydrogenase (LDH), urea and creatinine. It also normalized the levels of triglycerides (TG), total cholesterols (TC), low-density lipoprotein-cholesterol (LDL-c) and their consequent atherogenic index of plasma (AIP) in diabetic animals. Additionally, EVOO prevented lipid peroxidation (MDA) and reduced the level of hydrogen peroxide (H2O2) in diabetic animals. Concomitantly, it enhanced the activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), reducing thereby tissue oxidative stress injury. The overall histologic (pancreas, liver, and kidney) alterations were also improved after EVOO ingestion. The manifest anti-diabetic, lipid-lowering and histo-protective properties of EVOO were markedly potentiated with DAS-rich EVOO suggesting possible synergistic interactions between DAS and EVOO lipophilic bioactive ingredients. Overall, EVOO and DAS-rich EVOO show promise as functional foods and/or adjuvants for the treatment of diabetes and its complications.


Assuntos
Compostos Alílicos , Diabetes Mellitus Experimental , Hipoglicemiantes , Hipolipemiantes , Azeite de Oliva , Sulfetos , Animais , Azeite de Oliva/química , Azeite de Oliva/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Compostos Alílicos/farmacologia , Compostos Alílicos/uso terapêutico , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Sulfetos/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Camundongos , Hipolipemiantes/farmacologia , Masculino , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Glutationa Peroxidase/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Superóxido Dismutase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/sangue , Triglicerídeos/sangue , Triglicerídeos/metabolismo
7.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 88-96, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430036

RESUMO

Biosynthesis of silver nanoparticles using natural compounds derived from plant kingdom is currently used as safe and low-cost technique for nanoparticles synthesis with important abilities to inhibit multidrug resistant microorganisms (MDR). ESKAPE pathogens, especially MDR ones, are widely spread in hospital and intensive care units. In the present study, AgNPs using Ducrosia flabellifolia aqueous extract were synthesized using a reduction method. The green synthesized D. flabellifolia-AgNPs were characterized by UV-Vis spectrophotometer, Scanning electron microscopy (SEM), and X-ray diffraction assays. The tested D. flabellifolia aqueous extract was tested for its chemical composition using Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS). Anti-quorum sensing and anti-ESKAPE potential of D. flabellifolia-AgNPs was also performed.  Results from LC-ESI-MS technique revealed the identification of chlorogenic acid, protocatechuic acid, ferulic acid, caffeic acid, 2,5-dihydroxybenzoic acid, and gallic acid as main phytoconstituents. Indeed, the characterization of newly synthetized D. flabellifolia-AgNPs revealed spherical shape with mean particle size about 16.961±2.914 nm. Bio-reduction of silver was confirmed by the maximum surface plasmon resonance of D. flabellifolia-AgNPs at 430 nm. Newly synthetized D. flabellifolia-AgNPs were found to possess important anti-ESKAPE activity with low minimal inhibitory concentrations (MICs) ranging from 0.078 to 0.312 mg/mL, and low minimal bactericidal concentrations (MBCs) varying from 0.312 to 0.625 mg/mL. Moreover, D. flabellifolia-AgNPs were active against Candida utilis ATCC 9255, C. tropicalis ATCC 1362, and C. albicans ATCC 20402 with high mean diameter of growth inhibition at 5 mg/mL, low MICs, and minimal fungicidal concentrations values (MFCs). The newly synthetized D. flabellifolia-AgNPs were able to inhibit violacein production in Chromobacterium violaceum, pyocyanin in Pseudomonas aeruginosa starter strains.  Hence, the newly synthesized silver nanoparticles using D. flabellifolia aqueous extract can be used as an effective alternative to combat ESKAPE microorganisms. These silver nanoparticles can attenuate virulence of Gram-negative bacteria by interfering with the quorum sensing system and inhibiting cell-to-cell communication.


Assuntos
Anti-Infecciosos , Apiaceae , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Percepção de Quorum , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Candida albicans , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química
8.
Plants (Basel) ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337996

RESUMO

The journal retracts the article, 'Antimicrobial and Wound Healing Potential of a New Chemotype from Piper cubeba L. Essential Oil and In Silico Study on S. aureus tyrosyl-tRNA Synthetase Protein' [...].

9.
J Biomol Struct Dyn ; 42(3): 1368-1380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37191027

RESUMO

A revival interest has been given to natural products as sources of phytocompounds to be used as alternative treatment against infectious diseases. In this context, we aimed to investigate the antimicrobial potential of Ziziphus honey (ZH) against twelve clinical bacterial strains and several yeasts and molds using in vitro and computational approaches. The well-diffusion assay revealed that ZH was able to induce growth inhibition of most Gram-positive and Gram-negative bacteria. The high mean growth inhibition zone (mGIZ) was recorded in E. coli (Clinical strain, 217), S. aureus followed by E. coli ATCC 10536 (mGIZ values: 41.00 ± 1 mm, 40.67 ± 0.57 mm, and 34.67 ± 0.57 mm, respectively). The minimal bactericidal concentrations (MBCs) and minimal fungicidal concentration values (MFCs) from approximately 266.33 mg/mL to over 532.65 mg/mL. Molecular docking results revealed that the identified compounds maltose, 2-furoic acid, isopropyl ester, 2,4-imidazolidinedione, 5-(2-methylpropyl)-(S)- and 3,4,5-trihydroxytoluene, S-Methyl-L-Cysteine, 2-Furancarboxylic acid, L-Valine-N-ethoxycarbonyl, Hexanoic acid, 3,5,5-trimethyl-, Methyl-beta-D-thiogalactoside, gamma-Sitosterol, d-Mannose, 4-O-Methylmannose, 2,4-Imidazolidinedione, 5-(2-methylpropyl)- (S) were found to have good affinity for targeted receptor, respectively. Through a 100-ns dynamic simulation research, binding interactions and stability between promising phytochemicals and the active residues of the studied enzymes were confirmed. The ADMET profiling of all identified compounds revealed that most of them could be qualified as biologically active with good absorption and permeation. Overall, the results highlighted the efficiency of ZH against the tested clinical pathogenic strains. The antimicrobial potential and the potency displayed by the identified compounds could imply their further pharmacological applications.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Mel , Ziziphus , Antibacterianos/farmacologia , Staphylococcus aureus , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas , Escherichia coli , Simulação de Acoplamento Molecular , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
10.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067422

RESUMO

Illicium verum, or star anise, has many uses ranging from culinary to religious. It has been used in the food industry since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained via hydro-distillation of the aerial parts of Illicium verum. Twenty-four components were identified representing 92.55% of the analyzed essential oil. (E)-anethole (83.68%), limonene (3.19%), and α-pinene (0.71%) were the main constituents of I. verum EO. The results show that the obtained EO was effective against eight bacterial strains to different degrees. Concerning the antibiofilm activity, trans-anethole was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that I. verum EO possesses more potent inhibitory effects on the swarming behavior of PAO1 when compared to trans-anethole, with the percentage reaching 38% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirmed their important pharmacokinetic and drug-likeness properties. The in silico study using a molecular docking approach revealed a high binding score between the identified compounds with known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results suggest I. verum EO to be a potentially good antimicrobial agent to prevent food contamination with foodborne pathogenic bacteria.


Assuntos
Illicium , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Percepção de Quorum , Illicium/química , Simulação de Acoplamento Molecular , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Pseudomonas aeruginosa
11.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38139796

RESUMO

Citrus, which belongs to the Rutaceae family, is a very widespread genus in the Mediterranean Basin. In Tunisia, various parts of these spontaneous or cultivated plants are used in common dishes or in traditional medicine. The purpose of this work was to investigate C. limon and C. paradisi essential oil (EO). The samples were studied for their chemical composition using SPME/MS, as well as their antibacterial and antifungal activities. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) methods were used to evaluate the anticoagulant potentialities. The obtained results show that both essential oils are rich in monoterpenes hydrocarbons, whereby limonene is the main compound in C. paradisi EO (86.8%) and C. limon EO (60.6%). Moreover, C. paradisi EO contains ß-pinene (13.3%), sabinene (2.2%) and α-pinene (2.1%). The antibacterial assay of the essential oils showed important bactericidal and fungicidal effects against all strains tested. In fact, the MICs values of C. limon EO ranged from 0.625 to 2.5 mg/mL against all Gram-positive and Gram-negative bacteria, and from 6.25 to 12.5 mg/mL for Candida spp. strains, while C. paradisi EO was more active against all bacteria with low MICs values ranging from 0.192 to 0.786 mg/mL, and about 1.5 mg/mL against Candida species. Both tested Citrus EOs exhibited interesting anticoagulant activities as compared to heparin. The molecular docking approach was used to study the binding affinity and molecular interactions of all identified compounds with active sites of cytidine deaminase from Klebsiella pneumoniae (PDB: 6K63) and the C (30) carotenoid dehydrosqualene synthase from Staphylococcus aureus (PDB: 2ZCQ). The obtained results show that limonene had the highest binding score of -4.6 kcal.mol-1 with 6K63 enzyme, and -6.7 kcal.mol-1 with 2ZCQ receptor. The ADME profiling of the major constituents confirmed their important pharmacokinetic and drug-like properties. Hence, the obtained results highlight the potential use of both C. limon and C. paradisi essential oils as sources of bioactive compounds with antibacterial, antifungal, and anti-coagulant activities.

12.
Molecules ; 28(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959858

RESUMO

Plants with medicinal benefits are a crucial source of compounds for developing drugs. This study was designed to determine the chemical composition, antibacterial, antibiofilm, antioxidant, and anti-enzymatic activities of Pulicaria incisa (Lam.) DC. We also reported the molecular interaction between identified molecules and several receptors associated with antimicrobial and antibiofilm activities. A total of seventeen and thirteen compounds were identified in aqueous and methanolic extracts of P. incisa, respectively. The methanolic extract yielded a higher total content of polyphenols and flavonoids of about 84.80 ± 2.8 mg GAE/g and 28.30 ± 1.2 mg QE/g, respectively. Significant antibacterial activity was recorded for both extracts, with minimum inhibitory concentration (MIC) values ranging from 30 to 36 µg/mL, and the result was comparable to the reference antibiotic control. Antibiofilm assays revealed that both extracts were able to reduce the attachment of bacterial cells to 96-well plates, but the highest antibiofilm activity was recorded against Staphylococcus aureus. The methanolic extract also showed anti-enzymatic potency and high antioxidant activity, as demonstrated by all assays used, including DPPH, FRAP, and ABTS. These results were further validated by in silico approaches, particularly the molecular interaction of the identified compounds with the targeted receptors. These findings present P. incisa as a significant source of antibacterial, antibiofilm, antioxidant, and anti-enzymatic molecules.


Assuntos
Antioxidantes , Pulicaria , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Metanol
13.
Front Pharmacol ; 14: 1276179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795023

RESUMO

Introduction: Hyperphosphorylation of tau is an important event in Alzheimer's disease (AD) pathogenesis, leading to the generation of "neurofibrillary tangles," a histopathological hallmark associated with the onset of AD and related tauopathies. Microtubule-affinity regulating kinase 4 (MARK4) is an evolutionarily conserved Ser-Thr (S/T) kinase that phosphorylates tau and microtubule-associated proteins, thus playing a critical role in AD pathology. The uncontrolled neuronal migration is attributed to overexpressed MARK4, leading to disruption in microtubule dynamics. Inhibiting MARK4 is an attractive strategy in AD therapeutics. Methods: Molecular docking was performed to see the interactions between MARK4 and galantamine (GLT). Furthermore, 250 ns molecular dynamic studies were performed to investigate the stability and conformational dynamics of the MARK4-GLT complex. We performed fluorescence binding and isothermal titration calorimetry studies to measure the binding affinity between GLT and MARK4. Finally, an enzyme inhibition assay was performed to measure the MARK4 activity in the presence and absence of GLT. Results: We showed that GLT, an acetylcholinesterase inhibitor, binds to the active site cavity of MARK4 with an appreciable binding affinity. Molecular dynamic simulation for 250 ns demonstrated the stability and conformational dynamics of the MARK4-GLT complex. Fluorescence binding and isothermal titration calorimetry studies suggested a strong binding affinity. We further show that GLT inhibits the kinase activity of MARK4 significantly (IC50 = 5.87 µM). Conclusion: These results suggest that GLT is a potential inhibitor of MARK4 and could be a promising therapeutic target for AD. GLT's inhibition of MARK4 provides newer insights into the mechanism of GLT's action, which is already used to improve cognition in AD patients.

14.
Plants (Basel) ; 12(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37653914

RESUMO

Anethum graveolens L. has been known as an aromatic, medicinal, and culinary herb since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained by hydro-distillation of the aerial parts. Twelve components were identified, representing 92.55% of the analyzed essential oil. Limonene (48.05%), carvone (37.94%), cis-dihydrocarvone (3.5%), and trans-carvone (1.07%) were the main identified constituents. Results showed that the obtained EO was effective against eight bacterial strains at different degrees. Concerning the antibiofilm activity, limonene was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that A. graveolens induced more potent inhibitory effects in the swarming behavior of the PAO1 strain when compared to limonene, with a percentage reaching 33.33% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirms their important pharmacokinetic and drug-like properties. The in-silico study using molecular docking approaches reveals a high binding score between the identified compounds and known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results highlight the possible use of A. graveolens EO to prevent food contamination with foodborne pathogenic bacteria.

15.
Food Chem Toxicol ; 180: 114014, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659576

RESUMO

Honey is the most recognized natural food by-product derived from flower nectar and the upper aero-digestive tract of the honeybees. Significance of honey for its medicinal importance are well-documented in the world's oldest medical literatures. However, the current urbanization, environmental contaminations and changes in agricultural, as well as apiculture practices has led to various types of contaminations in honey. Among all, pesticide contamination has become one of the major issues worldwide. This review focuses on the recent updates concerning pesticides occurrence in honey, as well as how the repeated use and long-term exposure to honey contaminated with pesticide residues could affect the human physiological functions, possibly leading to the development of various cancers. Our findings suggests that uncontrolled use of pesticides in farming and apiculture practices leads to the occurrence of pesticides residues in honey. Therefore, regular consumption of such honey will pose a serious threat to human health, since most of the pesticides has been reported as potential carcinogens. This review will draw the attention of honey consumers, scientific communities, apiculture farmers, as well as governing bodies to strictly monitor the pesticide usage in floriculture, agriculture as well as other related practices.

16.
Pharmaceutics ; 15(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37765148

RESUMO

Sidr honey is a valuable source of bioactive compounds with promising biological properties. In the present study, antimicrobial, antioxidant, and anti-quorum sensing properties of Saudi Sidr honey were assessed, along with phytochemical analysis, via gas chromatography-mass spectrometry (GC-MS). In silico study was also carried out to study the drug-likeness properties of the identified compounds and to study their affinity with known target proteins assessed using molecular docking approach. The results showed that Saudi Sidr honey exhibited promising antibacterial activity, with MIC values ranging from 50 to 400 mg/mL and MBC values from 50 to >450 mg/mL. Interestingly, the Saudi Sidr honey was active against Candida auris and Candida neoformans, with an MIC value of about 500 mg/mL. Moreover, the Sidr honey showed important antioxidant activities (ABTS assay: IC50 5.41 ± 0.045 mg/mL; DPPH assay: IC50 7.70 ± 0.065 mg/mL) and ß-carotene bleaching test results (IC50 ≥ 20 mg/mL). In addition, the Saudi Sidr honey was able to inhibit biofilm formation on glass slides at 1/2 MIC by 77.11% for Bacillus subtilis, 70.88% for Staphylococcus aureus, 61.79% for Escherichia coli, and 56.64% for Pseudomonas aeruginosa. Similarly, violacein production by Chromobacterium violaceum was reduced by about 56.63%, while the production of pyocyanin by P. aeruginosa was decreased to 46.27% at a low concentration of Saudi Sidr honey. ADMET properties showed that five identified compounds, namely, 1-cyclohexylimidazolidin-2-one, 3-Butyl-3-methylcyclohexanone, 4-butyl-3-methoxy-2-cyclo penten-1-one, 2,2,3,3-Tetramethyl cyclopropane carboxylic acid, and 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl showed promising drug-likeness properties. The compound 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl exhibited the highest binding energy against antimicrobial and antioxidant target proteins (1JIJ, 2VAM, 6B8A, 6F86, 2CDU, and 1OG5). Overall, the obtained results highlighted the promising potential of Saudi Sidr honey as a rich source of bioactive compounds that can be used as food preservatives and antimicrobial, antioxidant, and anti-quorum sensing molecules.

17.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446759

RESUMO

Wild Vitex agnus-castus (VAC) is a Mediterranean plant that is rich in bioactive metabolites. This study aimed to validate, for the first time, the beneficial use of VAC fruits and fruit decoctions (VFDs) through in vitro and in vivo trials. Forty-one volatile components were detected in VAC fruits, with 1,8-cineole (30.3%) comprising the majority. The antioxidant activity of VFD was measured by using different in vitro methods (EC50 of 0.16 mg/mL by ß-carotene bleaching inhibition assay) and by measuring the DNA protection power. Using the disc diffusion assay, the antimicrobial activity of VFD was evaluated, and it exhibited a noticeable anticandidal activity. VFD did not cause any toxicity or mortality in rats treated with doses > 200 mg/kg. Using the acetic acid writhing test, the antinociceptive activity of VFD was measured. Our results showed that VFD at 200 mg/kg exhibited a higher analgesic activity (81.68%) than acetylsalicylic acid used as a positive control (74.35%). Its gastroprotective ability was assessed by HCl/ethanol-induced gastric lesions, which were remarkably inhibited (84.62%) by intraperitoneal administration of VFD. This work helps to validate the popular use of VAC to treat nociceptive, inflammatory, and gastric disorders and encourages researchers to further investigate the identification of pharmacological compounds from this species.


Assuntos
Vitex , Ratos , Animais , Vitex/química , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Frutas/química
18.
Biomol Biomed ; 23(6): 1051-1068, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421468

RESUMO

Antimicrobial resistance by pathogenic bacteria has become a global risk to human health in recent years. The most promising approach to combating antimicrobial resistance is to target virulent traits of bacteria. In the present study, a biosurfactant derived from the probiotic strain Lactobacillus acidophilus was tested against three Gram-negative bacteria to evaluate its inhibitory potential on their biofilms, and whether it affected the virulence factors controlled by quorum sensing (QS). A reduction in the virulence factors of Chromobacterium violaceum (violacein production), Serratia marcescens (prodigiosin production) and Pseudomonas aeruginosa (pyocyanin, total protease, LasB elastase and LasA protease production) was observed at different sub-MIC concentrations in a dose-dependent manner. Biofilm development was reduced by 65.76%, 70.64% and 58.12% at the highest sub-MIC levels for C. violaceum, P. aeruginosa and S. marcescens, respectively. Biofilm formation on glass surfaces exhibited significant reduction, with less bacterial aggregation and reduced formation of extracellular polymeric materials. Additionally, swimming motility and exopolysaccharides (EPS) production were shown to be reduced in the presence of the L. acidophilus-derived biosurfactant. Furthermore, molecular docking analysis performed on compounds identified through gas chromatography-mass spectrometry (GC-MS) analysis of QS and biofilm proteins yielded further insights into the mechanism underlying the anti-QS activity. Therefore, the present study has clearly demonstrated that a biosurfactant derived from L. acidophilus can significantly inhibit virulence factors of Gram-negative pathogenic bacteria. This could provide an effective method to inhibit the formation of biofilms and QS in Gram-negative bacteria.


Assuntos
Probióticos , Percepção de Quorum , Humanos , Virulência , Lactobacillus acidophilus/metabolismo , Simulação de Acoplamento Molecular , Lactobacillus/metabolismo , Antibacterianos/química , Biofilmes , Fatores de Virulência , Bactérias Gram-Negativas , Serratia marcescens/metabolismo , Peptídeo Hidrolases/farmacologia
19.
Infect Drug Resist ; 16: 4273-4283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424668

RESUMO

Introduction: Although Sumra and Sidr Saudi honey is widely used in traditional medicine due to its potent activity, it is unknown whether its prolonged usage has impact upon bacterial virulence or leading to reduced antibiotic sensitivity. Thus, the study aims to investigate the effect of prolonged (repeated) in-vitro exposure to Saudi honey on the antibiotic susceptibility profiles and biofilm formation of pathogenic bacteria. Methods: Several bacteria, including Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii, were in-vitro exposed ten times [passaged (P10)]to Sumra and Sider honey individually to introduce adapted bacteria (P10). Antibiotic susceptibility profiles of untreated (P0) and adapted (P10) bacteria were assessed using disc diffusion and microdilution assays. The tendency regarding biofilm formation following in-vitro exposure to honey (P10) was assessed using the Crystal violet staining method. Results: Adapted (P10) bacteria to both Sumra and Sidr honey showed an increased sensitivity to gentamicin, ceftazidime, ampicillin, amoxycillin/clavulanic acid, and ceftriaxone, when compared with the parent strains (P0). In addition, A. baumannii (P10) that was adapted to Sidr honey displayed a 4-fold increase in the minimal inhibitory concentration of the same honey following in-vitro exposure. 3-fold reduction in the tendency toward biofilm formation was observed for the Sumra-adapted (P10) methicillin resistant S. aureus strain, although there was a lower rate of reduction (1.5-fold) in biofilm formation by both the Sumra- and Sidr-adapted A. baumannii (P10) strains. Conclusion: The data highlight the positive impact of prolonged in-vitro exposure to Saudi honey (Sumra and Sider) for wound-associated bacteria since they displayed a significant increase in their sensitivity profiles to the tested antibiotic and a reduction in their ability to form biofilm. The increased bacterial sensitivity to antibiotics and a limited tendency toward biofilm formation would suggest the great potential therapeutic use of this Saudi honey (Sumra and Sidr) to treat wound infections.

20.
Biomol Biomed ; 23(6): 1038-1050, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270805

RESUMO

Staphylococcus aureus strains are a great contributor to both hospital acquired infections as well as community acquired infections. The objective of the present investigation was to compare potential differences in cytoplasmic amino acid levels between clinical and ATCC 29213 strains of S. aureus. The two strains were grown under ideal conditions to mid-exponential and stationary growth phases, after which they were harvested to analyze their amino acid profiles. Initially, the amino acid patterns of both strains were compared at the mid-exponential phase when grown in controlled conditions. At the mid-exponential phase, both strains shared common features in cytoplasmic amino acid levels, with glutamic acid, aspartic acid, proline, and alanine identified as key amino acids. However, the concentration profiles of seven amino acids exhibited major variances between the strains, even though the total cytoplasmic levels of amino acids did not alter significantly. At the stationary phase, the magnitudes of the amino acids abundant in the mid-exponential phase were altered. Aspartic acid became the most abundant amino acid in both strains accounting for 44% and 59% of the total amino acids in the clinical and ATCC 29213 strains, respectively. Lysine was the second most abundant amino acid in both strains, accounting for 16% of the total cytoplasmic amino acids, followed by glutamic acid, the concentration of which was significantly higher in the clinical strain than in the ATCC 29213 strain. Interestingly, histidine was clearly present in the clinical strain but was virtually lacking in the ATCC 29213 strain. This study reveals the dynamic diversity of amino acid levels among strains, which is an essential step toward illustrating the variability in S. aureus cytoplasmic amino acid profiles and could be significant in explaining variances among strains of S. aureus.


Assuntos
Aminoácidos , Infecções Estafilocócicas , Humanos , Aminoácidos/metabolismo , Staphylococcus aureus , Ácido Aspártico/metabolismo , Ácido Glutâmico/metabolismo , Citoplasma/metabolismo , Infecções Estafilocócicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA