Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
3.
Chem Biol Interact ; 135-136: 267-84, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11397396

RESUMO

Based on analogy with butadiene and isoprene, the metabolism of beta-chloroprene (2-chloro-1,3-butadiene, CD) to reactive intermediates is likely to be a key determinant of tumor development in laboratory rodents exposed to CD by inhalation. The purpose of this study is to identify species differences in toxic metabolite (epoxide) formation and detoxification in rodents and humans. The in-vitro metabolism of CD was studied in liver microsomes of B6C3F1 mice, Fischer/344 and Wistar rats, Syrian hamsters, and humans. Microsomal oxidation of CD in the presence of NADP(+), extraction with diethyl ether, and analysis by GC-mass selective detection (MSD) indicated that (1-chloroethenyl)oxirane (CEO) was an important metabolite of CD in the liver microsomal suspensions of all species studied. Other potential water-soluble oxidative metabolites may have been present. The oxidation of CD was inhibited by 4-methyl pyrazole, an inhibitor of CYP 2E1. CEO was sufficiently volatile at 37 degrees C for vial headspace analysis using GC-MSD single ion monitoring (m/z=39). CEO was synthesized and used to conduct partition measurements along with CD and further explore CEO metabolism in liver microsomes and cytosol. The liquid-to-air partition coefficients for CD and CEO in the microsomal suspensions were 0.7 and 58, respectively. Apparent species differences in the uptake of CEO by microsomal hydrolysis were hamster approximately human>rats>mice. Hydrolysis was inhibited by 1,1,1-trichloropropene oxide, a competitive inhibitor of epoxide hydrolase. A preliminary experiment indicated that the uptake of CEO in liver cytosol by GSH conjugation was hamster>rats approximately mice (human cytosol not yet tested). In general, the results suggest that metabolism may help explain species differences showing a greater sensitivity for CD-induced tumorigenicity in mice, for example, compared with hamsters. Additional experiments are in progress to quantify the kinetic parameters of CD oxidation and CEO metabolism by enzymatic hydrolysis and conjugation by glutathione S-transferase for in cytosol. A future goal is to use the kinetic rates to parameterize a physiologically based toxicokinetic model and relate the burden of toxic metabolite to the cancer dose-response observed in experimental animals.


Assuntos
Cloropreno/metabolismo , Microssomos Hepáticos/metabolismo , Animais , Cloropreno/toxicidade , Cricetinae , Óxido de Etileno/análogos & derivados , Óxido de Etileno/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glutationa/metabolismo , Humanos , Técnicas In Vitro , Cinética , Masculino , Mesocricetus , Camundongos , Oxirredução , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA