Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Am Soc Mass Spectrom ; 35(7): 1394-1402, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38905538

RESUMO

Mass-spectrometry based assays in structural biology studies measure either intact or digested proteins. Typically, different mass spectrometers are dedicated for such measurements: those optimized for rapid analysis of peptides or those designed for high molecular weight analysis. A commercial trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) platform is widely utilized for proteomics and metabolomics, with ion mobility providing a separation dimension in addition to liquid chromatography. The ability to perform high-quality native mass spectrometry of protein complexes, however, remains largely uninvestigated. Here, we evaluate a commercial TIMS-Q-TOF platform for analyzing noncovalent protein complexes by utilizing the instrument's full range of ion mobility, MS, and MS/MS (both in-source activation and collision cell CID) capabilities. The TIMS analyzer is able to be tuned gently to yield collision cross sections of native-like complexes comparable to those previously reported on various instrument platforms. In-source activation and collision cell CID were robust for both small and large complexes. TIMS-CID was performed on protein complexes streptavidin (53 kDa), avidin (68 kDa), and cholera toxin B (CTB, 58 kDa). Complexes pyruvate kinase (237 kDa) and GroEL (801 kDa) were beyond the trapping capabilities of the commercial TIMS analyzer, but TOF mass spectra could be acquired. The presented results indicate that the commercial TIMS-Q-TOF platform can be used for both omics and native mass spectrometry applications; however, modifications to the commercial RF drivers for both the TIMS analyzer and quadrupole (currently limited to m/z 3000) are necessary to mobility analyze protein complexes greater than about 60 kDa.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Piruvato Quinase/química , Piruvato Quinase/análise , Estreptavidina/química , Estreptavidina/análise , Toxina da Cólera/análise , Toxina da Cólera/química , Avidina/química , Avidina/análise , Proteínas/análise , Proteínas/química
2.
Anal Chem ; 95(46): 17082-17088, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37937965

RESUMO

Biothreat detection has continued to gain attention. Samples suspected to fall into any of the CDC's biothreat categories require identification by processes that require specialized expertise and facilities. Recent developments in analytical instrumentation and machine learning algorithms offer rapid and accurate classification of Gram-positive and Gram-negative bacterial species. This is achieved by analyzing the negative ions generated from bacterial cell extracts with a modified linear quadrupole ion-trap mass spectrometer fitted with two-dimensional tandem mass spectrometry capabilities (2D MS/MS). The 2D MS/MS data domain of a bacterial cell extract is recorded within five s using a five-scan average after sample preparation by a simple extraction. Bacteria were classified at the species level by their lipid profiles using the random forest, k-nearest neighbor, and multilayer perceptron machine learning models. 2D MS/MS data can also be treated as image data for use with image recognition algorithms such as convolutional neural networks. The classification accuracy of all models tested was greater than 99%. Adding to previously published work on the 2D MS/MS analysis of bacterial growth and the profiling of sporulating bacteria, this study demonstrates the utility and information-rich nature of 2D MS/MS in the identification of bacterial pathogens at the species level when coupled with machine learning.


Assuntos
Bactérias , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Algoritmos , Redes Neurais de Computação , Aprendizado de Máquina
3.
Annu Rev Biophys ; 51: 157-179, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34982572

RESUMO

Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed.


Assuntos
Proteínas , Substâncias Macromoleculares , Espectrometria de Massas/métodos , Proteínas/química
4.
Biochemistry ; 61(4): 252-264, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35080857

RESUMO

Aß dimers are a basic building block of many larger Aß oligomers and are among the most neurotoxic and pathologically relevant species in Alzheimer's disease. Homogeneous Aß dimers are difficult to prepare, characterize, and study because Aß forms heterogeneous mixtures of oligomers that vary in size and can rapidly aggregate into more stable fibrils. This paper introduces AßC18C33 as a disulfide-stabilized analogue of Aß42 that forms stable homogeneous dimers in lipid environments but does not aggregate to form insoluble fibrils. The AßC18C33 peptide is readily expressed in Escherichia coli and purified by reverse-phase HPLC to give ca. 8 mg of pure peptide per liter of bacterial culture. SDS-PAGE establishes that AßC18C33 forms homogeneous dimers in the membrane-like environment of SDS and that conformational stabilization of the peptide with a disulfide bond prevents the formation of heterogeneous mixtures of oligomers. Mass spectrometric (MS) studies in the presence of dodecyl maltoside (DDM) further confirm the formation of stable noncovalent dimers. Circular dichroism (CD) spectroscopy establishes that AßC18C33 adopts a ß-sheet conformation in detergent solutions and supports a model in which the intramolecular disulfide bond induces ß-hairpin folding and dimer formation in lipid environments. Thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM) studies indicate that AßC18C33 does not undergo fibril formation in aqueous buffer solutions and demonstrate that the intramolecular disulfide bond prevents fibril formation. The recently published NMR structure of an Aß42 tetramer (PDB: 6RHY) provides a working model for the AßC18C33 dimer, in which two ß-hairpins assemble through hydrogen bonding to form a four-stranded antiparallel ß-sheet. It is anticipated that AßC18C33 will serve as a stable, nonfibrilizing, and noncovalent Aß dimer model for amyloid and Alzheimer's disease research.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Dissulfetos/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/química , Dicroísmo Circular/métodos , Dissulfetos/química , Humanos , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão/métodos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Conformação Proteica em Folha beta
5.
Chem Rev ; 122(8): 7442-7487, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-34726898

RESUMO

Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.


Assuntos
Espectrometria de Massas em Tandem , Humanos , Biologia , Microscopia Crioeletrônica , Proteínas/química , Espectrometria de Massas em Tandem/métodos
6.
Methods Enzymol ; 659: 71-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752299

RESUMO

The ubiquitous ribonucleoprotein (RNP) form of RNase P catalyzes the Mg2+-dependent cleavage of the 5' leader of precursor-transfer RNAs. The rate and fidelity of the single catalytic RNA subunit in the RNase P RNP is significantly enhanced by association with protein cofactors. While the bacterial RNP exhibits robust activity at near-physiological Mg2+ concentrations with a single essential protein cofactor, archaeal and eukaryotic RNase P are dependent on up to 5 and 10 protein subunits, respectively. Archaeal RNase P-whose proteins share eukaryotic homologs-is an experimentally tractable model for dissecting in a large RNP the roles of multiple proteins that aid an RNA catalyst. We describe protocols to assemble RNase P from Methanococcus maripaludis, a methanogenic archaeon. We present strategies for tag-less purification of four of the five proteins (the tag from the fifth is removed post-purification), an approach that helps reconstitute the RNase P RNP with near-native constituents. We demonstrate the value of native mass spectrometry (MS) in establishing the accurate masses (including native oligomers and modifications) of all six subunits in M. maripaludis RNase P, and the merits of mass photometry (MP) as a complement to native MS for characterizing the oligomeric state of protein complexes. We showcase the value of native MS and MP in revealing time-dependent modifications (e.g., oxidation) and aggregation of protein subunits, thereby providing insights into the decreased function of RNase P assembled with aged preparations of recombinant subunits. Our protocols and cautionary findings are applicable to studies of other cellular RNPs.


Assuntos
Proteínas Arqueais , RNA Catalítico , Archaea , Proteínas Arqueais/metabolismo , RNA , Precursores de RNA , RNA Catalítico/metabolismo , Ribonuclease P/química , Ribonuclease P/genética , Ribonuclease P/metabolismo
7.
Analyst ; 146(22): 6861-6873, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34632987

RESUMO

We describe the implementation of a simple three-electrode surface-induced dissociation (SID) cell on a cyclic ion mobility spectrometer (cIMS) and demonstrate the utility of multipass mobility separations for resolving multiple conformations of protein complexes generated during collision-induced and surface-induced unfolding (CIU & SIU) experiments. In addition to CIU and SIU, SID of protein complexes is readily accomplished within the native instrument software and with no additional external power supplies by entering a single SID collision energy, a simplification in user experience compared to prior implementations. A set of cyclic homomeric protein complexes and a heterohexamer with known CID and SID behavior were analyzed to investigate mass and mobility resolution improvements, the latter of which improved by 20-50% (median: 33%) compared to a linear travelling wave device. Multiple passes of intact complexes, or their SID fragments, increased the mobility resolution by an average of 15% per pass, with the racetrack effect being observed after ∼3 or 4 passes, depending on the drift time spread of the analytes. Even with modest improvements to apparent mobility resolving power, multipass experiments were particularly useful for separating conformations produced from CIU and SIU experiments. We illustrate several examples where either (1) multipass experiments revealed multiple overlapping conformations previously unobserved or obscured due to limited mobility resolution, or (2) CIU or SIU conformations that appeared 'native' in a single pass experiment were actually slightly compacted or expanded, with the change only being measurable through multipass experiments. The work conducted here, the first utilization of multipass cyclic ion mobility for CIU, SIU, and SID of protein assemblies and a demonstration of a wholly integrated SIU/SID workflow, paves the way for widespread adoption of SID technology for native mass spectrometry and also improves our understanding of gas-phase protein complex CIU and SIU conformationomes.


Assuntos
Proteínas , Software , Espectrometria de Massas
8.
Int J Mass Spectrom ; 4612021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33889055

RESUMO

We describe instrumentation for conducting tandem surface-induced dissociation (tSID) of native protein complexes on an ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The two stages of SID are accomplished with split lenses replacing the entrance lenses of the quadrupole mass filter (stage 1, referred to herein as SID-Q) and the collision cell (stage 2, Q-SID). After SID-Q, the scattered projectile ions and subcomplexes formed in transit traverse the 20 mm pre-filter prior to the mass-selecting quadrupole, providing preliminary insights into the SID fragmentation kinetics of noncovalent protein complexes. The isolated SID fragments (subcomplexes) are then fragmented by SID in the collision cell entrance lens (Q-SID), generating subcomplexes of subcomplexes. We show that the ultrahigh resolution of the FT-ICR can be used for deconvolving species overlapping in m/z, which are particularly prominent in tandem SID spectra due to the combination of symmetric charge partitioning and narrow product ion charge state distributions. Various protein complex topologies are explored, including homotetramers, homopentamers, a homohexamer, and a heterohexamer.

9.
Anal Chem ; 93(13): 5513-5520, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33751887

RESUMO

Native mass spectrometry (nMS), particularly in conjunction with gas-phase ion mobility spectrometry measurements, has proven useful as a structural biology tool for evaluating the stoichiometry, conformation, and topology of protein complexes. Here, we demonstrate the combination of trapped ion mobility spectrometry (TIMS) and surface-induced dissociation (SID) on a Bruker SolariX XR 15 T FT-ICR mass spectrometer for the structural analysis of protein complexes. We successfully performed SID on mobility-selected protein complexes, including the streptavidin tetramer and cholera toxin B with bound ligands. Additionally, TIMS-SID was employed on a mixture of the peptides desArg1 and desArg9 bradykinin to mobility-separate and identify the individual peptides. Importantly, results show that native-like conformations can be maintained throughout the TIMS analysis. The TIMS-SID spectra are analogous to SID spectra acquired using quadrupole mass selection, indicating little measurable, if any, structural rearrangement during mobility selection. Mobility parking was used on the ion or mobility of interest and 50-200 SID mass spectra were averaged. High-quality TIMS-SID spectra were acquired over a period of 2-10 min, comparable to or slightly longer than SID coupled with ion mobility on various instrument platforms in our laboratory. The ultrahigh resolving power of the 15 T FT-ICR allowed for the identification and relative quantification of overlapping SID fragments with the same nominal m/z based on isotope patterns, and it shows promise as a platform to probe small mass differences, such as protein/ligand binding or post-translational modifications. These results represent the potential of TIMS-SID-MS for the analysis of both protein complexes and peptides.


Assuntos
Espectrometria de Mobilidade Iônica , Proteínas , Espectrometria de Massas , Peptídeos , Estreptavidina
10.
Anal Chem ; 92(16): 11195-11203, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32700898

RESUMO

We describe a set of simple devices for surface-induced dissociation of proteins and protein complexes on three instrument platforms. All of the devices use a novel yet simple split lens geometry that is minimally invasive (requiring a few millimeters along the ion path axis) and is easier to operate than prior generations of devices. The split lens is designed to be small enough to replace the entrance lens of a Bruker FT-ICR collision cell, the dynamic range enhancement (DRE) lens of a Waters Q-IM-TOF, or the exit lens of a transfer multipole of a Thermo Scientific Extended Mass Range (EMR) Orbitrap. Despite the decrease in size and reduction in number of electrodes to 3 (from 10 to 12 in Gen 1 and ∼6 in Gen 2), we show sensitivity improvement in a variety of cases across all platforms while also maintaining SID capabilities across a wide mass and energy range. The coupling of SID, high resolution, and ion mobility is demonstrated for a variety of protein complexes of varying topologies.


Assuntos
Proteína C-Reativa/análise , Glutamato Desidrogenase/análise , Piruvato Quinase/análise , Animais , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Coelhos
11.
J Am Soc Mass Spectrom ; 31(5): 1123-1131, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32281791

RESUMO

Two experiments are described that extend the capabilities of quadrupole ion trap mass spectrometers operated in the precursor and neutral loss scan mode. The first experiment, a triple resonance precursor ion scan, is used to enhance sensitivity, selectivity, and molecular coverage. This method augments the ion trap precursor ion scan with the application of a second excitation frequency to selectively activate first-generation (MS2) product ions as they are formed and produce second-generation (MS3) product ions, which are then mass-selectively ejected with a third auxiliary signal and detected. This single mass analyzer experiment can be equated to performing the sequential precursor ion scan in a multiple analyzer system (Anal. Chem. 1990, 62 (17), 1809-1818). The second capability demonstrated is "frequency tagging", a method used to differentiate between ions ejected due to inherent instability under given trapping conditions, which causes artifacts during these scans, and ions that are resonantly ejected by the product ion ejection frequency. Beat frequencies are used to modulate resonance ejection peaks but conveniently do not modulate boundary ejection peaks. Frequency tagging provides a mechanism to identify the artifact peaks that are a consequence of operating at a high trapping voltage (i.e., low mass cutoff) for optimal precursor/product ion selectivity. The experiment is demonstrated for precursor and for neutral loss scans.

12.
Anal Chem ; 91(21): 13752-13762, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31592640

RESUMO

A two-dimensional tandem mass spectrometry (2D MS/MS) scan has been developed for the linear quadrupole ion trap. Precursor ions are mass-selectively excited using a nonlinear ac frequency sweep at constant rf voltage, while simultaneously, all product ions of the excited precursor ions are ejected from the ion trap using a broad-band waveform. The fragmentation time of the precursor ions correlates with the precursor m/z value (the first mass dimension) and also with the ejection time of the product ions, allowing the correlation between precursor and product ions. Additionally, the second mass dimension (product ions' m/z values) is recovered through fast Fourier transform of each mass spectral peak, revealing either intentionally introduced "frequency tags" or the product ion micropacket frequencies, both of which can be converted to product ion m/z through the classical Mathieu parameters, thereby revealing a product ion mass spectrum for every precursor ion without prior isolation. We demonstrate the utility of this method for analyzing a broad range of structurally related precursor ions, including chemical warfare agent simulants, fentanyls and other opioids, amphetamines, cathinones, antihistamines, and tetracyclic antidepressants.

13.
Anal Chem ; 91(21): 14049-14057, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31584811

RESUMO

A second-generation ("Gen 2") device capable of surface-induced dissociation (SID) and collision-induced dissociation (CID) for Fourier transform ion cyclotron resonance mass spectrometry of protein complexes has been designed, simulated, fabricated, and experimentally compared to a first-generation device ("Gen 1"). The primary goals of the redesign were to (1) simplify SID by reducing the number of electrodes, (2) increase CID and SID sensitivity by lengthening the collision cell, and (3) increase the mass range of the device for analysis of larger multimeric proteins, all while maintaining the normal instrument configuration and operation. Compared to Gen 1, Gen 2 exhibits an approximately 10× increase in sensitivity in flythrough mode, 7× increase in CID sensitivity for protonated leucine enkephalin (m/z 556), and 14× increase of CID sensitivity of 53 kDa streptavidin tetramer. It also approximately doubles the useful mass range (from m/z 8000 to m/z 15 000) using a rectilinear ion trap with a smaller inscribed radius or triples it (to m/z 22 000) using a hexapole collision cell and yields a 3-10× increase in SID sensitivity. We demonstrate the increased mass range and sensitivity on a variety of model molecules spanning nearly 3 orders of magnitude in absolute mass and present examples where the high resolution of the FT-ICR is advantageous for deconvoluting overlapping SID fragments.


Assuntos
Ciclotrons , Análise de Fourier , Proteínas/análise , Eletrodos , Desenho de Equipamento , Espectrometria de Massas/instrumentação , Propriedades de Superfície
14.
J Am Soc Mass Spectrom ; 30(6): 1092-1101, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30887460

RESUMO

We have demonstrated the use of a simple single ion trap mass spectrometer to identify classes of compounds as well as individual components in complex mixtures. First, a neutral reagent was used to mass tag oxygen-containing analytes using a gas-phase ion/molecule reaction. Then, a neutral loss scan was used to indicate the carboxylic acids. The lack of unit mass selectivity in the neutral loss scan required subsequent product ion scans to confirm the presence and identity of the individual carboxylic acids. The neutral loss scan technique reduced the number of data-dependent MS/MS scans required to confirm identification of signals as protonated carboxylic acids. The method was demonstrated on neat mixtures of standard carboxylic acids as well as on solutions of relevant pharmaceutical tablets and may be generalizable to other ion/molecule reactions.


Assuntos
Ácidos Carboxílicos/análise , Preparações Farmacêuticas/química , Ácidos Borônicos/análise , Íons/análise , Metilação , Oxigênio/análise , Prótons , Comprimidos , Espectrometria de Massas em Tandem/métodos
15.
Analyst ; 143(22): 5438-5452, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30311922

RESUMO

A new set of operations for tandem mass spectrometry in a linear ion trap is described. Logical MS/MS operations categorize compounds in mixtures based on characteristic structural features as revealed by MS/MS behavior recorded in multiple fragmentation pathways. This approach is a conceptual extension of tandem mass spectrometry in which interrogation of the full data domain is performed by simultaneous implementation of precursor and neutral loss scans. This process can be thought of as moving through the 2D MS/MS data domain along multiple scan lines simultaneously, which allows experiments that explore the 2D data domain of MS/MS to be couched in terms of logical operations, AND, NAND (not and), OR (inclusive or), XOR (exclusive or), NOT, etc. Examples of particular logical conditions include all precursor ions that fragment to both of two selected product ions (logical AND), or all precursor ions that do not produce a specified fragment ion (logical NOT). These and other operational modes (TRUE/FALSE, XOR, OR, etc.) complement and extend the existing set of conventional MS/MS scans, namely product scans, precursor scans, and neutral loss scans. We describe the implementation of logical MS/MS scans on a commercial linear ion trap mass spectrometer using simple mixtures of amphetamines and fentanyl analogues and argue their utility for complex mixture analysis.

16.
J Am Soc Mass Spectrom ; 29(7): 1355-1364, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29536414

RESUMO

Implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 miniature rectilinear ion trap mass spectrometer is described, and performance is compared to that of a commercial Thermo linear trap quadropole (LTQ) linear ion trap. The ac frequency scan version of the technique at constant rf voltage is used here because it is operationally much simpler to implement. Remarkably, the Mini 12 shows up to two orders of magnitude higher sensitivity compared to that of the LTQ. Resolution on the LTQ is better than unit at scan speeds of ~ 400 Th/s, whereas peak widths on the Mini 12, on average, range from 0.5 to 2.0 Th full width at half maximum and depend heavily on the precursor ion Mathieu q parameter as well as the pump down time that precedes the mass scan. Both sensitivity and resolution are maximized under higher pressure conditions (short pump down time) on the Mini 12. The effective mass range of the product ion ejection waveform was found to be 5.8 Th on the Mini 12 in the precursor ion scan mode vs. that of 3.9 Th on the LTQ. In the neutral loss scan mode, the product ion selectivity was between 8 and 11 Th on the Mini 12 and between 7 and 8 Th on the LTQ. The effects of nonlinear resonance lines on the Mini 12 were also explored. Graphical Abstract ᅟ.

17.
J Am Soc Mass Spectrom ; 29(7): 1345-1354, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29524108

RESUMO

Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. Graphical Abstract ᅟ.

18.
Anal Chem ; 89(20): 11053-11060, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28953354

RESUMO

Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MSn operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.

19.
J Am Soc Mass Spectrom ; 28(9): 1929-1938, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28577288

RESUMO

Reported herein is a simple method of performing single analyzer precursor ion scans in a linear quadrupole ion trap using orthogonal double resonance excitation. A first supplementary AC signal applied to the y electrodes is scanned through ion secular frequencies in order to mass-selectively excite precursor ions while, simultaneously, a second fixed-frequency AC signal is applied orthogonally on the x electrodes in order to eject product ions of selected mass-to-charge ratios towards the detector. The two AC signals are applied orthogonally so as to preclude the possibility of (1) inadvertently ejecting precursor ions into the detector, which results in artifact peaks, and (2) prevent beat frequencies on the x electrodes from ejecting ions off-resonance. Precursor ion scans are implemented while using the inverse Mathieu q scan for easier mass calibration. The orthogonal double resonance experiment results in single ion trap precursor scans with far less intense artifact peaks than when both AC signals are applied to the same electrodes, paving the way for implementation of neutral loss scanning in single ion trap mass spectrometers. Graphical Abstract ᅟ.

20.
Anal Chem ; 89(15): 8148-8155, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28644622

RESUMO

In this follow-up paper to our previous work on single analyzer precursor ion scans in a linear quadrupole ion trap (Snyder, D. T.; Cooks, R. G. Single analyzer precursor ion scans in a linear quadrupole ion trap using orthogonal double resonance excitation. J. Am. Soc. Mass Spectrom. 2017, DOI: 10.1007/s13361-017-1707-y), we now report the development of single analyzer neutral loss scans in a linear quadrupole ion trap using orthogonal double resonance excitation. Methodologically, there are three key differences between single analyzer precursor ion scans and neutral loss scans under constant radiofrequency (rf) conditions: (1) in the latter experiment, both excitation and ejection frequencies must be scanned, whereas in the former the ejection frequency is fixed, (2) the need to maintain a constant neutral loss while incrementing both precursor and product ion masses, complicated by the complex relationship between secular frequency and mass, requires use of two simultaneous frequency scans, both linear in mass, and (3) because the ejection frequency is scanned, a third ac signal occurring between the ac excitation and ac ejection frequency scans must also be applied and scanned in order to reject artifact peaks caused by ejection of unfragmented precursor ions. Using this methodology, we demonstrate neutral loss scans on a commercial linear ion trap using mixtures of illicit drugs and acylcarnitines. We also demonstrate neutral loss scanning on a Populus deltoides leaf and on a lignin sample, both significantly more complex mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA