Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(3): 644-653, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213288

RESUMO

Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/ß and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.


Assuntos
NF-kappa B , Pinus , Humanos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Imunidade Inata , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo
2.
Front Pharmacol ; 14: 1217111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649894

RESUMO

Introduction: Although sinapic acid is found in various edible plants and has been shown to have anti-inflammatory properties including colitis, its underlying mechanism and effects on the composition of the gut microbiota are largely unknown. We aimed to identify an early response kinase that regulates the localization of tight junction proteins, act at the onset of the inflammatory response, and is regulated by sinapic acid. Additionally, we analyzed the effects of sinapic acid on the homeostasis of the intestinal microbiome. Methods: We examined the aberrant alterations of early response genes such as nuclear factor-kappa B (NF-κB) and activating transcription factor (ATF)-2 within 2 h of sinapic acid treatment in fully differentiated Caco-2 cells with or without lipopolysaccharide and tumor necrosis factor (TNF)-α stimulation. To confirm the effect of sinapic acid on stimulus-induced delocalization of tight junction proteins, including zonula occludens (ZO)-1, occludin, and claudin-2, all tight junction proteins were investigated by analyzing a fraction of membrane and cytosol proteins extracted from Caco-2 cells and mice intestines. Colitis was induced in C57BL/6 mice using 2% dextran sulfate sodium and sinapic acid (2 or 10 mg/kg/day) was administrated for 15 days. Furthermore, the nutraceutical and pharmaceutical activities of sinapic acid for treating inflammatory bowel disease (IBD) evaluated. Results: We confirmed that sinapic acid significantly suppressed the stimulus-induced delocalization of tight junction proteins from the intestinal cell membrane and abnormal intestinal permeability as well as the expression of inflammatory cytokines such as interleukin (IL)-1ß and TNF-α in vitro and in vivo. Sinapic acid was found to bind directly to transforming growth factor beta-activated kinase 1 (TAK1) and inhibit the stimulus-induced activation of NF-κB as well as MAPK/ATF-2 pathways, which in turn regulated the expression of mitogen-activated protein kinase (MLCK). Dietary sinapic acid also alleviated the imbalanced of gut microbiota and symptoms of IBD, evidenced by improvements in the length and morphology of the intestine in mice with colitis. Discussion: These findings indicate that sinapic acid may be an effective nutraceutical and pharmaceutical agent for IBD treatment as it targets TAK1 and inhibits subsequent NF-κB and ATF-2 signaling.

3.
Food Funct ; 14(10): 4777-4791, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37128780

RESUMO

Inflammatory bowel disease (IBD) is continuously increasing globally and caused by intestinal barrier dysfunction. Although protocatechuic acid (PCA) has a protective effect on colitis, the molecular mechanisms underlying its contribution to intestinal barrier function remain unknown. Transepithelial electrical resistance (TEER) and FITC-dextran permeability measurements reveled that PCA suppresses lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α-induced increase in intestinal permeability; zonula occludens (ZO)-1 and claudin-2 redistribution was also suppressed in the epithelial cell membranes of differentiated Caco-2 cells. PCA was found to directly bind Rho-associated coiled-coil containing protein kinase (ROCK), subsequently suppressing myosin light chain (MLC) phosphorylation. Notably, PCA binds ROCK to a similar degree as Y27632, a selective ROCK inhibitor. Orally administering PCA (5 or 25 mg per kg per day) to C57BL/6 mice alleviated the 3% dextran sulfate sodium (DSS)-induced colitis symptoms including reduced colon length, disrupted intestinal barrier structure, and increased proinflammatory cytokines expressions, such as interleukin (IL)-1ß, TNF-α, and IL-6. Furthermore, orally administering PCA suppressed DSS-induced ZO-1 and claudin-2/4 redistribution in mice colon membrane fractions. Therefore, PCA may serve as a promising nutraceutical to improve gut health and alleviate IBD by maintaining intestinal barrier function in vitro and in vivo.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Células CACO-2 , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/farmacologia , Proteínas de Junções Íntimas/metabolismo , Claudina-2/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Junções Íntimas , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Mucosa Intestinal/metabolismo , Sulfato de Dextrana/efeitos adversos
4.
J Microbiol Biotechnol ; 32(12): 1589-1598, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36377200

RESUMO

Microfibrillated cellulose (MFC) is a valuable material with wide industrial applications, particularly for the food and cosmetics industries, owing to its excellent physiochemical properties. Here, we prepared high-solid microfibrillated cellulose (HMFC) from the centrifugation of Gelidium amansii-derived MFC right after fibrillation. Dispersion properties, morphology, and structural changes were monitored during processing. HMFC has a five-fold higher solid concentration than MFC without significant changes to dispersion properties. SEM images and FTIR spectra of HMFC revealed a stable surface and structure against centrifugal forces. HMFC exhibited 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, although it could not scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH). Moreover, HMFC inhibited the generation of LPS-induced excessive nitrite and radial oxygen species in murine macrophage RAW264.7 cells. Additionally, HMFC suppressed LPS-induced Keap-1 expression in the cytosol but did not alter iNOS expression. HMFC also attenuated the UVB-induced phosphorylation of p38, c-Jun N-terminal kinase (JNK) 1/2, and extracellular-signal-regulated kinase (ERK) 1/2, as well as the phosphorylation of c-Jun in the immortalized human skin keratinocyte HaCaT cells. Therefore, the application of centrifugation is suitable for producing high-solid MFC as a candidate material for anti-inflammatory and anti-oxidative marine cosmeceuticals.


Assuntos
Celulose , Lipopolissacarídeos , Animais , Camundongos , Humanos , Celulose/química , Fosforilação
5.
Antioxidants (Basel) ; 10(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34943012

RESUMO

The skin acts as the primary defense organ that protects the body from the external environment. Skin cancer is one of the most common cancers in the world. Skin carcinogenesis is usually caused by cell degeneration due to exposure to ultraviolet (UV) radiation, which causes changes in various signaling networks, disrupting the homeostasis of single skin cells. In this review, we summarize the roles of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and epidermal growth factor receptor (EGFR) in UV-induced skin carcinogenesis. Furthermore, we describe the crosstalk that exists between NOX, EGFR, and protein tyrosine phosphatase κ and its oncogenic downstream signaling pathways. Chemoprevention is the use of chemical compounds to recover the healthy status of the skin or delay cancer development. Current evidence from in vitro and in vivo studies on chemopreventive phytochemicals that target NOX, EGFR, or both, as major regulators of skin carcinogenesis will also be discussed.

6.
Carbohydr Polym ; 257: 117569, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541629

RESUMO

Cellulose microfibrils (CMF) were successfully isolated from the red alga, Gelidium amansii. G. amansii was processed in two stages, microwave digestion and high-speed blending to remove agar and extract microfibrils, respectively. After pretreatment at 180 °C for 10 min, G. amansii containing 40.1 % glucan was microfibrillated through homogenization. Morphological analysis by SEM and FTIR, and analysis of the degree of fibrillation with water retention, sedimentation, and CtCBD3 protein binding of G. amansii-derived CMF were investigated. Functional analysis of CMF showed suppression of cyclooxygenase-2 expression in both in vitro and in vivo experiments. Additionally, suppression was evident in the: i) epidermal thickness of mice skin; ii) presence of proinflammatory cytokines; and iii) inhibition of JNK1/2 and p38 phosphorylation in human keratinocyte HaCaT cells. Such activity demonstrates its anti-inflammatory properties. The results in this study showed the possibility of using CMF derived from a red alga as an anti-inflammation material.

7.
Carbohydr Polym ; 254: 117315, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357878

RESUMO

Treated Gelidium amansii cellulose nanocrystal (TGa CNC) was prepared from treated Gelidium amansii (TGa) and evaluated for its anti-inflammatory effect on human keratinocytes and mice skin. Using three independent cell lines, TGa CNC showed no cytotoxicity in HaCaT, Beas-2B, and Raw 264.7 cells. A non-toxic dose of TGa CNC suppressed ultraviolet (UV) B-induced AP (activated protein)-1, and subsequent cyclooxygenase (COX)-2 gene and protein expression in HaCaT cells. TGa CNC suppressed translocation of c-Jun from the cytosol to the nucleus responds to UVB irradiation. Additionally, TGa CNC suppressed UVB-induced extracellular signal-regulated kinases (ERKs)1/2/MEK/2/B-Raf, c-Jun N-terminal kinase (JNK)1/2/MKK4/7, Akt, and epidermal growth factor receptor (EGFR) phosphorylation in HaCaT cells. Dorsal treatment of TGa CNC significantly suppressed acute UVB-induced increase in epidermal thickness and COX-2 expression in mice skin. Overall, these results indicate that TGa CNC exerts potent anti-inflammatory activity through the inhibition of abnormal COX-2 expression and mitogen-activated protein kinases (MAPK)s signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Celulose/farmacologia , Queratinócitos/efeitos dos fármacos , Nanopartículas/química , Extratos Vegetais/farmacologia , Rodófitas/química , Pele/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Células HaCaT , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta
8.
Prev Nutr Food Sci ; 25(2): 166-172, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32676468

RESUMO

Development of anti-inflammatory products remains in high demand due to the incidence of inflammatory diseases, including diabetes, cardiovascular disease, and neurodegenerative diseases. In this study, we examined the potential anti-inflammatory activity of the nutraceutical, Kmeria duperreana (Pierre) Dandy extract (KDE). We evaluated the ability of KDE to inhibit lipopolysaccharide (LPS)-induced inflammatory markers, including nitric oxide (NO), nuclear factor kappa-B, and mitogen-activated protein kinases, in RAW 264.7 cells. KDE suppressed LPS-induced nitrite production and inducible NO synthase (iNOS) expression in RAW 264.7 cells, but has no effect on cyclooxygenase-2 expression. KDE also suppressed LPS-induced phosphorylation of p65, IκB kinase, and p38 in RAW 264.7 cells. Through Western blot assays and immunofluorescence results, we showed that KDE suppresses LPS-induced p65 translocation from cytosol to the nucleus in RAW 264.7 cells. Moreover, KDE suppressed mRNA expression of LPS-induced interleukin (IL)-1ß in RAW 264.7 cells, but had no effect on mRNA expression of IL-6 or tumor necrosis factor-a. These results demonstrate that KDE may be a promising anti-inflammatory nutraceutical. KDE may act by suppressing iNOS expression and subsequent NO production by inhibiting phosphorylation of p65 and p38 and suppressing translocation of p65 from the cytosol to the nucleus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA