Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci Technol ; 65(4): 735-747, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37970507

RESUMO

The composition of fatty acids determines the flavor and quality of meat. Flavor compounds are generated during the cooking process by the decomposition of volatile fatty acids via lipid oxidation. A number of research on candidate genes related to fatty acid content in livestock species have been published. The majority of these studies focused on pigs and cattle; the association between fatty acid composition and meat quality in chickens has rarely been reported. Therefore, this study investigated candidate genes associated with fatty acid composition in chickens. A genome-wide association study (GWAS) was performed on 767 individuals from an F2 crossbred population of Yeonsan Ogye and White Leghorn chickens. The Illumina chicken 60K significant single-nucleotide polymorphism (SNP) genotype data and 30 fatty acids (%) in the breast meat of animals slaughtered at 10 weeks of age were analyzed. SNPs were shown to be significant in 15 traits: C10:0, C14:0, C18:0, C18:1n-7, C18:1n-9, C18:2n-6, C20:0, C20:2, C20:3n-6, C20:4n-6, C20:5n-3, C24:0, C24:1n-9, monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). These SNPs were mostly located on chromosome 10 and around the following genes: ACSS3, BTG1, MCEE, PPARGC1A, ACSL4, ELOVL4, CYB5R4, ME1, and TRPM1. Both oleic acid and arachidonic acid contained the candidate genes: MCEE and TRPM1. These two fatty acids are antagonistic to each other and have been identified as traits that contribute to the production of volatile fatty acids. The results of this study improve our understanding of the genetic mechanisms through which fatty acids in chicken affect the meat flavor.

2.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234786

RESUMO

Herein, we present a qualitative and quantitative analysis of the compositions of plasmalogens and phospholipids (PLs) in dried big head shrimp (Solenocera melantho), opossum shrimp (Neomysis awatschensis), mussel (Mytilus galloprovincialis), and sea cucumber (Apostichopus japonicus). We also analyze the fatty acid composition of the extracted lipids, phosphatidyl choline (PtdCho), and plasmalogen choline (PlsCho) from each sample. In big head shrimp, opossum shrimp, and mussel, phosphatidyl choline (PtdCho) was the most abundant PL at 1677.9, 1603, and 1661.6 mg/100 g of dried sample, respectively, whereas the most abundant PL in sea cucumber was PlsCho (206.9 mg/100 g of dried sample). In all four samples, plasmalogen ethanolamine (PlsEtn) was higher than phosphatidyl ethanolamine (PtdEtn). The content (mg/100 g of dried sample) of PlsCho was highest in mussel (379.0), and it was higher in big head shrimp (262.3) and opossum shrimp (245.6) than sea cucumber (206.9). The contents (mg/100 g of dried sample) of PlsEtn were in the order of mussel (675.4) > big head shrimp (629.5) > opossum shrimp (217.9) > sea cucumber (51.5). For analyzing the fatty acids at the sn-2 position of PlsCho, the consecutive treatment with phospholipase A1, solid phase extraction, thin-layer chromatography (TLC), and GC-FID were applied. The most abundant fatty acid was eicosapentaenoic acid (EPA, C20:5, n-3) in big head shrimp and sea cucumber, palmitoleic acid (C16:1, n-7) in opossum shrimp, and docosadienoic acid (C22:2, n-6) in mussel.


Assuntos
Bivalves , Pepinos-do-Mar , Animais , Colina , Ácido Eicosapentaenoico , Etanolaminas , Ácidos Graxos/análise , Espectroscopia de Ressonância Magnética , Gambás , Fosfatidilcolinas , Fosfolipases , Fosfolipídeos/análise , Plasmalogênios/química
3.
Molecules ; 26(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205624

RESUMO

Studies have reported that cholesterol, a molecule found mainly in animals, is also present in some plants and algae. This study aimed to determine whether cholesterol exists in three dehydrated algae species, namely, Pyropia tenera, Saccharina japonica, and Undaria pinnatifida, and in one plant species, namely, Perilla frutescens (four perilla seed oil samples were analyzed). These species were chosen for investigation because they are common ingredients in East Asian cuisine. Gas chromatography-flame ionization detection (GC-FID) analysis found that cholesterol was present in P. tenera (14.6 mg/100 g) and in all four perilla seed oil samples (0.3-0.5 mg/100 g). High-performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD) also demonstrated that cholesterol was present in P. tenera (14.2 mg/100 g) and allowed the separation of cholesterol from its isomer lathosterol. However, cholesterol could not be detected by HPLC-ELSD in the perilla seed oil samples, most likely because it is only present in trace amounts. Moreover, liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed the presence of cholesterol in both P. tenera and perilla seed oil. MRM results further suggested that lathosterol (a precursor of cholesterol) was present in P. tenera.


Assuntos
Perilla frutescens/metabolismo , Petróleo/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Ácido alfa-Linolênico/metabolismo , Colesterol/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos
4.
Foods ; 10(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068968

RESUMO

When cassava is used for the production of distilled spirits through fermentation and distillation, toxic hydrogen cyanide (HCN) is released from linamarin and carcinogenic ethyl carbamate is produced. Herein, cyanide and ethyl carbamate contents were monitored during the fermentation and lab-scale continuous distillation processes. Thereafter, mass balance and the influence of copper chips were evaluated. Results showed that 81.5% of cyanide was removed after fermentation. Use of copper chips completely prevented the migration of cyanide into the distilled spirits, while 88.3% of cyanide migrated from the fermented liquid in the absence of copper chips. Formation of ethyl carbamate was significantly promoted during distillation. Most of the produced ethyl carbamate (73.2%) was transferred into the distilled spirits in the absence of copper chips, only 9.6% of the ethyl carbamate was transferred when copper chips were used. Thus, copper chips effectively prevented the migration of cyanide and ethyl carbamate into the distilled spirts during continuous distillation.

5.
Biomed Rep ; 2(5): 737-742, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25054020

RESUMO

Lung cancer is one of the main causes of cancer-related mortality. The identification of early diagnostic biomarkers improved outcomes for lung cancer patients. Serum fibrin-fibrinogen degradation products (FDP) levels are elevated in numerous malignancies due to hemostatic alterations. The serum FDP levels were compared to the levels of cytokeratin 19 fragment antigen (CYFRA 21-1), another well-established biomarker. The serum samples from 193 lung cancer patients, 84 healthy controls and 106 patients with benign respiratory diseases were obtained. The serum FDP level was measured using the DR-70 immunoassay and the CYFRA 21-1 level was measured by electrochemiluminescence using the Roche Analytics E170. Receiver operating characteristics curves were used to assess the predictive sensitivity and specificity. The mean serum FDP level in lung cancer patients (35.01±229.02 µg/ml) was significantly higher compared to the 190 non-cancerous subjects (0.60±0.75 µg/ml; P=0.039). The mean serum CYFRA 21-1 level in lung cancer patients (4.50±6.67 ng/ml) was also significantly higher compared to the non-cancerous subjects (1.40±0.83 ng/ml; P<0.05). FDP exhibited clinical sensitivity and specificity of 86 and 75%, respectively, at an optimal cut-off at 0.67 µg/ml. CYFRA 21-1 exhibited clinical sensitivity and specificity of 77 and 74%, respectively, at a cut-off of 1.65 ng/ml. The serum FDP area under the curve (0.87) was slightly higher compared to CYFRA 21-1 (0.83). Therefore, it is apparent that serum FDP is comparable to CYFRA 21-1 as a lung cancer biomarker and can be used for clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA